Skip to main content

Overview of Immobilized Enzymes’ Applications in Pharmaceutical, Chemical, and Food Industry

  • Protocol
  • First Online:
Immobilization of Enzymes and Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2100))

Abstract

The use of immobilized enzymes in industry is becoming a routine process for the manufacture of many key compounds in the pharmaceutical, chemical, and food industry. Some enzymes like lipases are naturally robust and efficient, can be used for the production of many different molecules, and have found broad industrial applications. Some more specific enzymes, like transaminases, have required protein engineering to become suitable for applications in industrial manufacture. For all enzymes, the possibility to be immobilized and used in a heterogeneous form brings important industrial and environmental advantages such as simplified downstream processing or continuous process operations. Here, we present a series of large-scale applications of immobilized enzymes with benefits for the food, chemical, pharmaceutical, cosmetics, and medical device industries, some of them hardly reported before.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Neuberg C, Welde E, Phytochemical reactions III (1914) Transformation of aromatic and fatty aromatic aldehydes into alcohols. Biochem Z 62:477–481

    Google Scholar 

  2. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K (2012) Engineering the third wave of biocatalysis. Nature 485. https://doi.org/10.1038/nature11117

  3. Bornscheuer UT (2017) The fourth wave of biocatalysis is approaching. Philos Trans R Soc A Math Phys Eng Sci 376. https://doi.org/10.1098/rsta.2017.0063

  4. Tufvesson P, Fu W, Skibsted Jensen J, Woodley JM (2010) Process considerations for the scale-up and implementation of biocatalysis. Food Bioprod Process 88:3–11. https://doi.org/10.1016/j.fbp.2010.01.003

    Article  CAS  Google Scholar 

  5. DiCosimo R, Mc Auliffe J, Poulose AJ, Bohlmann G (2013) Industrial use of immobilized enzymes. Chem Soc Rev 42:6437–6474. https://doi.org/10.1039/c3cs35506c

    Article  CAS  Google Scholar 

  6. Tufvesson P, Lima-Ramos J, Nordblad M, Woodley JM (2011) Guidelines and cost analysis for catalyst production in biocatalytic processes. Org Process Res Dev 15:266–274. https://doi.org/10.1021/op1002165

    Article  CAS  Google Scholar 

  7. Truppo MD (2017) Biocatalysis in the pharmaceutical industry: the need for speed. ACS Med Chem Lett 8:476–480. https://doi.org/10.1021/acsmedchemlett.7b00114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Truppo MD, Hughes G (2011) Development of an improved immobilized CAL-B for the enzymatic resolution of a key intermediate to odanacatib. Org Process Res Dev 15:1033–1035. https://doi.org/10.1021/op200157c

    Article  CAS  Google Scholar 

  9. Gauthier JY, Chauret N, Cromlish W, Desmarais S, Duong LT, Falgueyret JP, Kimmel DB, Lamontagne S, Léger S, LeRiche T, Li CS, Massé F, McKay DJ, Nicoll-Griffith DA, Oballa RM, Palmer JT, Percival MD, Riendeau D, Robichaud J, Rodan GA, Rodan SB, Seto C, Thérien M, Truong VL, Venuti MC, Wesolowski G, Young RN, Zamboni R, Black WC (2008) The discovery of odanacatib (MK-0822), a selective inhibitor of cathepsin K. Bioorg Med Chem Lett 18:923–928. https://doi.org/10.1016/j.bmcl.2007.12.047

    Article  CAS  PubMed  Google Scholar 

  10. Limanto J, Shafiee A, Devine PN, Upadhyay V, Desmond RA, Foster BR, Gauthier DR, Reamer RA, Volante RP (2005) An efficient chemoenzymatic approach to (S)-γ-fluoroleucine ethyl ester. J Org Chem 70:2372–2375. https://doi.org/10.1021/jo047918j

    Article  CAS  PubMed  Google Scholar 

  11. Basso A, Hesseler M, Serban S (2016) Hydrophobic microenvironment optimization for efficient immobilization of lipases on octadecyl functionalised resins. Tetrahedron 72:7323–7328. https://doi.org/10.1016/j.tet.2016.02.021

    Article  CAS  Google Scholar 

  12. Truppo MD, Strotman H, Hughes G (2012) Development of an immobilized transaminase capable of operating in organic solvent. ChemCatChem 4:1071–1074. https://doi.org/10.1002/cctc.201200228

    Article  CAS  Google Scholar 

  13. Basso A, Neto W, Serban S, Summers BD (2018) How to optimise the immobilization of amino transaminases on synthetic enzyme carriers, to achieve up to a 13-fold increase in performances. Chem Today 36:40–42

    CAS  Google Scholar 

  14. Merck Provides Update on Odanacatib Development Program | Business Wire, (n.d.). https://www.businesswire.com/news/home/20160902005107/en/Merck-Update-Odanacatib-Development-Program. Accessed 3 Jan 2019

  15. Boyer N, Marcellin P (2000) Pathogenesis, diagnosis and management of hepatitis C. J Hepatol 32:98–112. https://doi.org/10.1016/S0168-8278(00)80419-5

    Article  CAS  PubMed  Google Scholar 

  16. Neumann AU, Lam NP, Dahari H, Gretch DR, Wiley TE, Layden TJ, Perelson AS (1998) Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy. Science 282:103–107. https://doi.org/10.1126/SCIENCE.282.5386.103

    Article  CAS  PubMed  Google Scholar 

  17. Fukumoto T, Berg T, Ku Y, Bechstein WO, Knoop M, Lemmens H, Lobeck H, Hopf U, Neuhaus P (1996) Viral dynamics of hepatitis C early after orthotopic liver transplantation: evidence for rapid turnover of serum virions. Hepatology 24:1351–1354. https://doi.org/10.1002/hep.510240606

    Article  CAS  PubMed  Google Scholar 

  18. E. Domingo, E. Martinez-Salas, F. Sobrino, J. Carlos De La Tortea, A. Portela, J. Ortin, C. Lopez-Galindezb, P. Pkez-Breaab, N. Villanuevab, R. Nhjera’, S. Vandepol’, D. Steinhauer’, N. Depolo’, J. Holland, The quasispecies (extremely heterogeneous) nature of viral RNA genome populations: biological relevance-a review, Gene 40 (1985) 1–8

    Article  CAS  Google Scholar 

  19. Martell M, Esteban JI, Quer J, Genescà J, Weiner A, Esteban R, Guardia J, Gómez J (1992) Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies nature of HCV genome distribution. J Virol 66:3225–3229

    Article  CAS  Google Scholar 

  20. Cagulada A, Chan J, Chan L, Colby DA (2015) Synthesis of an antiviral compound, US 2015/0175626A1

    Google Scholar 

  21. Bjornson K, Canales E, Cottell JJ, Karki KK (2016) Inhibitors of Hepatitis C virus, US 9296782 B2

    Google Scholar 

  22. Yang CY (2014) Hepatitis C treatments with Sofosbuvir, WO 2014/185995 Al

    Google Scholar 

  23. Martin N, Schöne O, Spitzenstätter HP, Benito-Garagorri D (2016) A process for preparing a crystalline form of sofosbuvir, WO 2016/156512 A

    Google Scholar 

  24. Gaboardi M, Castaldi M, Castaldi G, Helmy S (2016) Sofosbuvir in crystalline form and process for its preparation, WO 2016/016327 Al

    Google Scholar 

  25. Muñiz CC, Zelaya TEC, Esquivel GR, Perrino FJF (2007) Penicillin and cephalosporin production: a historical perspective. Rev Latinoam Microbiol 49:88–98

    Google Scholar 

  26. Fleming A (1929) On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzæ. Br J Exp Pathol 10:226

    CAS  PubMed Central  Google Scholar 

  27. Florey H, Chain E, Heatley N, Jennings M, Sanders A, Abraham E, Florey M (1950) Antibiotics: a survey of penicillin, streptomycin, and other antimicrobial substances from fungi, actinomycetes, bacteria, and plants. JAMA 143(13):1217

    Google Scholar 

  28. Wegman MA, Janssen MHA, van Rantwijk F, Sheldon RA (2001) Towards biocatalytic synthesis of β-lactam antibiotics. Adv Synth Catal 343:559–576. https://doi.org/10.1002/1615-4169(200108)343:6/7<559::AID-ADSC559>3.3.CO;2-Q

    Article  CAS  Google Scholar 

  29. Harold MM, Van Theodorus J, Godfried MD (2005) Process for the synthesis of cefaclor, WO 2006/069984 A2

    Google Scholar 

  30. European Centre For Disease Prevention And Control, Antibiotic consumption in Europe (2017). http://drive-ab.eu/wp-content/uploads/2014/09/WP1A_Final-QMs-QIs_final.pdf. Accessed 28 Jan 2019

  31. Batchelor FR, Doyle FP, Nayler JHC, Rolinson GN (1959) Synthesis of penicillin: 6-aminopenicillanic acid in penicillin fermentations. Nature 183:257–258. https://doi.org/10.1038/183257b0

    Article  CAS  PubMed  Google Scholar 

  32. Rolinson GN, Batchelor FR, Butterworth D, Cameron-Wood J, Cole M, Eustace GC, Hart MV, Richards M, Chain EB (1960) Formation of 6-aminopenicillanic acid from penicillin by enzymatic hydrolysis. Nature 187:236–237. https://doi.org/10.1038/187236a0

    Article  CAS  PubMed  Google Scholar 

  33. Claridge CA, Gourevitch A, Lein J (1960) Bacterial penicillin amidase. Nature 187:237–238. https://doi.org/10.1038/187237a0

    Article  CAS  PubMed  Google Scholar 

  34. Huang HT, English AR, Seto TA, Shull GM, Sobin BA (1960) Enzymatic hydrolysis of the side chain of penicillins. J Am Chem Soc 82:3790–3791. https://doi.org/10.1021/ja01499a083

    Article  CAS  Google Scholar 

  35. Kallenberg AI, van Rantwijk F, Sheldon RA (2005) Immobilization of penicillin G acylase: the key to optimum performance. Adv Synth Catal 347:905–926. https://doi.org/10.1002/adsc.200505042

    Article  CAS  Google Scholar 

  36. Vandamme EJ (1984) Biotechnology of industrial antibiotics. M. Dekker

    Google Scholar 

  37. Vandamme EJ (1983) Peptide antibiotic production through immobilized biocatalyst technology. Enzym Microb Technol 5:403–416. https://doi.org/10.1016/0141-0229(83)90021-2

    Article  CAS  Google Scholar 

  38. Shewale JG, Sudhakaran VK (1997) Penicillin V acylase: its potential in the production of 6-aminopenicillanic acid. Enzym Microb Technol 20:402–410. https://doi.org/10.1016/S0141-0229(96)00176-7

    Article  CAS  Google Scholar 

  39. Parmar A, Kumar H, Marwaha S, Kennedy J (2000) Advances in enzymatic transformation of penicillins to 6-aminopenicillanic acid (6-APA). Biotechnol Adv 18:289–301. https://doi.org/10.1016/S0734-9750(00)00039-2

    Article  CAS  PubMed  Google Scholar 

  40. Bruggink A, Roos EC, de Vroom E (1998) Penicillin acylase in the industrial production of β-lactam antibiotics. Org Process Res Dev 2:128–133. https://doi.org/10.1021/op9700643

    Article  CAS  Google Scholar 

  41. Kasche V (1986) Mechanism and yields in enzyme catalysed equilibrium and kinetically controlled synthesis of β-lactam antibiotics, peptides and other condensation products. Enzym Microb Technol 8:4–16. https://doi.org/10.1016/0141-0229(86)90003-7

    Article  CAS  Google Scholar 

  42. Savile CK, Janey JM, Mundorff EC, Moore JC, Tam S, Jarvis WR, Colbeck JC, Krebber A, Fleitz FJ, Brands J, Devine PN, Huisman GW, Hughes GJ (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329:305–309. https://doi.org/10.1126/science.1188934

    Article  CAS  PubMed  Google Scholar 

  43. Truppo MD, Janey JM, Hughes G (2012) Immobilized transaminases and processes for making and using immobilized transaminase, WO2012177527A1

    Google Scholar 

  44. Hansen KB, Hsiao Y, Xu F, Rivera N, Clausen A, Kubryk M, Krska S, Rosner T, Simmons B, Balsells J, Ikemoto N, Sun Y, Spindler F, Malan C, Grabowski EJJ, Armstrong JD (2009) Highly efficient asymmetric synthesis of sitagliptin. J Am Chem Soc 131:8798–8804. https://doi.org/10.1021/ja902462q

    Article  CAS  PubMed  Google Scholar 

  45. White EH (1955) The chemistry of the N-alkyl-N-nitrosoamides. II. A new method for the deamination of aliphatic amines. J Am Chem Soc 77:6011–6014. https://doi.org/10.1021/ja01627a064

    Article  CAS  Google Scholar 

  46. Ditrich K, Balkenhohl F, Ladner W (1996) Separation of optically active amides, WO 97/10201A1

    Google Scholar 

  47. Balkenhohl F, Ditrich K, Nübling C (1995) Racemate separation of primary and secondary heteroatom-substituted amine by enzyme-catalysed acylation, WO1996023894A1

    Google Scholar 

  48. ChiPros® Chiral Amines for Your Innovation - BASF Intermediates, (n.d.). http://www.intermediates.basf.com/chemicals/chiral-intermediates/amines. Accessed 2 Jan 2019

  49. Simon A, Karl U (2010) Expanding the scope of industrial biocatalysis, spec. Chem Mag:36–38

    Google Scholar 

  50. Ohrui T, Sakakibara Y, Aono Y, Kato M, Takao H, Kawaguchi T (1973), Process for continuously synthesizing acrylic acid esters, US 3875212A

    Google Scholar 

  51. Hauer B, Branneby CK, Maurer S, Trodler P, Miiller M (2012), CALB muteins and their use, US 8206969B2

    Google Scholar 

  52. van Rantwijk F, Hacking MAPJ, Sheldon RA (2000) Lipase-catalyzed synthesis of carboxylic amides: nitrogen nucleophiles as acyl acceptor. Monatshefte Fuer Chemie/Chemical Mon 131:549–569. https://doi.org/10.1007/s007060070086

    Article  Google Scholar 

  53. de Zoete MC, Kock-van Dalen AC, van Rantwijk F, Sheldon RA (1996) Lipase-catalysed ammoniolysis of lipids. A facile synthesis of fatty acid amides. J Mol Catal B Enzym 2:141–145. https://doi.org/10.1016/S1381-1177(96)00025-2

    Article  Google Scholar 

  54. Brandstadt KF, Lane TH, Gross RA (2004) Enzyme catalyzed organosilicon esters and amides, US 2004/0082024A1

    Google Scholar 

  55. Jackson D (2011) Application of biocatalysis in the agrochemical industry. In: Tao J, Kazlauskas RJ (eds) Biocatal. green chem. chem. process dev. John Wiley & Sons, Hoboken, pp 255–276

    Chapter  Google Scholar 

  56. Blaser H-U, Buser H-P, Coers K, Hanreich R, Jalett H-P, Jelsch E, Pugin B, Schneider H-D, Spindler F, Wegmann A (1999) The chiral switch of metolachlor: the development of a large-scale enantioselective catalytic process. Chimia (Aarau) 53:275–280

    CAS  Google Scholar 

  57. Blaser H-U (2002) The chiral switch of (S)-metolachlor: a personal account of an industrial odyssey in asymmetric catalysis. Adv Synth Catal 344:17. https://doi.org/10.1002/1615-4169(200201)344:1<17::AID-ADSC17>3.0.CO;2-8

    Article  CAS  Google Scholar 

  58. Blaser H-U, Pugin B, Spindler F, Thommen M (2007) From a chiral switch to a ligand portfolio for asymmetric catalysis. Acc Chem Res 40:1240–1250. https://doi.org/10.1021/ar7001057

    Article  CAS  PubMed  Google Scholar 

  59. Shroff JR, Shroff VR, Shanker B (2013) Hydrogenation of imines - Google Patents, US8461386B2

    Google Scholar 

  60. Nuebling C, Ditrich K, Dully C (1998) Optical resolution of primary amines by enantioselective acylation with a long-chain alkoxyalkanoate or phenoxyalkanoate ester in the presence of a lipase, DE19837745A1

    Google Scholar 

  61. Riechers H, Simon J, Hoehn A, Kramer A, Funke F, Siegel W, Nuebling C (1998) Racemization of optically active amines useful as pharmaceuticals or intermediates, by contacting in gaseous form with hydrogen and catalyst, giving high racemization degree and yield, DE19852282A1

    Google Scholar 

  62. Hayes KS, Lutz EG, Turcotte MG (1999) Racemization of optically active alkoxyamines, US6060624A

    Google Scholar 

  63. Ansorge-Schumacher MB, Thum O (2013) Immobilised lipases in the cosmetics industry. Chem Soc Rev 42:6475–6490. https://doi.org/10.1039/c3cs35484a

    Article  CAS  PubMed  Google Scholar 

  64. Nieguth R, Eckstein M, Wiemann LO, Thum O, Ansorge-Schumacher MB (2011) Enabling industrial biocatalytic processes by application of silicone-coated enzyme preparations. Adv Synth Catal 353:2522–2528. https://doi.org/10.1002/adsc.201100421

    Article  CAS  Google Scholar 

  65. Clendennen S, Yuan J (2015) An enzymatic approach to sustainable manufacturing of personal care ingredients: reducing the traditional environmental impact of a consumer product’s life cycle. Euro Cosmet 9:334

    Google Scholar 

  66. Garcia T, Martinez M, Aracil J (1996) Enzymatic synthesis of myristyl myristate. Estimation of parameters and optimization of the process. Biocatal Biotransformation 14:67–85. https://doi.org/10.3109/10242429609106877

    Article  CAS  Google Scholar 

  67. Hills G (2003) Industrial use of lipases to produce fatty acid esters. Eur J Lipid Sci Technol 105:601–607. https://doi.org/10.1002/ejlt.200300853

    Article  CAS  Google Scholar 

  68. E. US EPA, OCSPP,OPPT, Presidential Green Chemistry Challenge: 2009 Greener Synthetic Pathways Award, (n.d.). https://www.epa.gov/greenchemistry/presidential-green-chemistry-challenge-2009-greener-synthetic-pathways-award. Accessed 2 Jan 2019

  69. Chibata I (1982) Application of immobilized enzymes for asymmetric reactions. In: V. 185 ACS Symposium Series (ed) Asymmetric react. process. chem. American Chemical Society, Washington, pp 195–203. https://doi.org/10.1021/bk-1982-0185.ch014

    Chapter  Google Scholar 

  70. Chibata I, Tosa T, Sato T, Mori T, Yamamoto K (1975) Applications of immobilized enzymes and immobilized microbial cells for L-amino acid production. In: Immobil. Enzym. Technol. Springer US, Boston, MA, pp 111–127. https://doi.org/10.1007/978-1-4615-8735-4_9.

    Chapter  Google Scholar 

  71. Crabb D, Shettyt JK (1999) Commodity scale production of sugars from starches. Curr Opin Microbiol 2:252–256

    Article  CAS  Google Scholar 

  72. Chen WP (1980) Glucose isomerase. Process Biochem 15:30–41

    CAS  Google Scholar 

  73. Bhosale SH, Rao MB, Deshpande VV (1996) Molecular and industrial aspects of glucose isomerase. Microbiol Rev 60:280–300

    Article  CAS  Google Scholar 

  74. Jensen VJ, Rugh S (1987) Industrial-scale production and application of immobilized glucose isomerase. In: Mosbach K (ed) Methods Enzymol. - Immobil. Enzym. Cels, part C. Elsevier Inc., Amsterdam, pp 356–370

    Chapter  Google Scholar 

  75. Jørgensen OB, Karlsen LG, Nielsen NB, Pedersen S, Rugh S (1988) A new immobilized glucose isomerase with high productivity produced by a strain of streptomyces murinus. Starch Stärke 40:307–313. https://doi.org/10.1002/star.19880400809

    Article  Google Scholar 

  76. Zittan L, Poulsen PB, Hemmingsen SH (1975) Sweetzyme - a new immobilized glucose isomerase. Starch Stärke 27:236–241. https://doi.org/10.1002/star.19750270705

    Article  CAS  Google Scholar 

  77. Hong YH, Kim JH, Kim SB, Kim JH, Lee YM (2011) Immobilization of psicose-epimerase and a method of producing d-psicose using the same, WO 2011/040708 A3

    Google Scholar 

  78. Maruta K, Yamamoto K, Nishimoto T, Chaen H, Nakada T (2011) Ketose 3-epimerase, its preparation and uses, US20110275138A1

    Google Scholar 

  79. Deok-kun Oh HJ Kim YJ Lee SH Song SW Park JH Kim SB (2011) D-psicose production method by D-psicose epimerase, US8030035B2

    Google Scholar 

  80. Woodyer RD, Armentrout RW (2014) 3-Epimerase, WO 2014/049373

    Google Scholar 

  81. Woodyer RD, Cohen JC, Bridges JR (2017) Sweetener, US 9635879 B2

    Google Scholar 

  82. Tate & Lyle Introduces DOLCIA PRIMA® Crystalline Allulose; Low-Calorie Solution Provides the Full Taste and Enjoyment of Sugar, But Without All the Calories, (n.d.). https://www.tateandlyle.com/news/tate-lyle-introduces-dolcia-prima-crystalline-allulose-low-calorie-solution-provides-full. Accessed 2 Jan 2019

  83. Chini J, Febbruari B, Matulli M, Vagnoli L (2014) Enzymes immobilized on styrene-divinyl benzene matrices and the use thereof in industrial productions., WO2014/006606 A1

    Google Scholar 

  84. Lim BC, Kim HJ, Oh DK (2008) Tagatose production with pH control in a stirred tank reactor containing immobilized L-arabinose isomerase from Thermotoga neapolitana. Appl Biochem Biotechnol 149:245–253. https://doi.org/10.1007/s12010-007-8095-x

  85. Oh DK (2007) Tagatose: properties, applications, and biotechnological processes. Appl Microbiol Biotechnol 76:1–8. https://doi.org/10.1007/s00253-007-0981-1

  86. Kim P, Roh H, Yoon S, Choi J (1999) Biological tagatose production by recombinant escherichia coli, WO 00/68397

    Google Scholar 

  87. Park A-RR, Oh D-KK (2010) Galacto-oligosaccharide production using microbial β-galactosidase: current state and perspectives. Appl Microbiol Biotechnol 85:1279–1286. https://doi.org/10.1007/s00253-009-2356-2

    Article  CAS  PubMed  Google Scholar 

  88. Huerta LM, Vera C, Guerrero C, Wilson L, Illanes A (2010) Synthesis of galacto-oligosaccharides at very high lactose concentrations with immobilized beta-galactosidases from Aspergillus oryzae. Process Biochem 46:245–252. https://doi.org/10.1016/j.procbio.2010.08.018

    Article  CAS  Google Scholar 

  89. Gaur R, Pant H, Jain R, Khare SK (2006) Galacto-oligosaccharide synthesis by immobilized Aspergillus oryzae b-galactosidase. Food Chem 97:426–430. https://doi.org/10.1016/j.foodchem.2005.05.020

  90. Benjamins F, Cao L, Broekhuis A (2015) Production of galacto-oligosaccharides, WO 2015/034356A1

    Google Scholar 

  91. Reyes-Duarte D, Lopez-Cortes N, Torres P, Comelles F, Parra JL, Peña S, Ugidos AV, Ballesteros A, Plou FJ (2011) Synthesis and properties of ascorbyl esters catalyzed by lipozyme TL IM using triglycerides as acyl donors. J Am Oil Chem Soc 88:57–64. https://doi.org/10.1007/s11746-010-1643-5

    Article  CAS  Google Scholar 

  92. Burham H, Rasheed RAGA, Noor NM, Badruddin S, Sidek H (2009) Enzymatic synthesis of palm-based ascorbyl esters. J Mol Catal B Enzym 58:153–157. https://doi.org/10.1016/J.MOLCATB.2008.12.012

    Article  CAS  Google Scholar 

  93. Villeneuve P (2007) Lipases in lipophilization reactions. Biotechnol Adv 25:515–536. https://doi.org/10.1016/J.BIOTECHADV.2007.06.001

    Article  CAS  PubMed  Google Scholar 

  94. Stevenson RW, Luddy FE, Rothbart HL (1979) Enzymatic acyl exchange to vary saturation in di- and triglycerides. J Am Oil Chem Soc 56:676–680. https://doi.org/10.1007/BF02660072

    Article  CAS  Google Scholar 

  95. Ahmadi L, Wright AJ, Marangoni AG (2009) Structural and mechanical behavior of tristearin/triolein-rich mixtures and the modification achieved by interesterification. Food Biophys 4:64–76. https://doi.org/10.1007/s11483-009-9102-2

    Article  Google Scholar 

  96. Dijkstra AJ (2013) Edible oil processing from a patent perspective. Springer US, Boston, MA. https://doi.org/10.1007/978-1-4614-3351-4

    Book  Google Scholar 

  97. Willis WM, Marangoni AG (2002) Enzymatic interesterification. In: Akoh CC (ed) Food lipids. Marcel Dekker, New York, pp 839–875. https://doi.org/10.1201/9780203908815

    Chapter  Google Scholar 

  98. Xu X, Guo Z, Zhan H, Vikbjerg AF, Damstrup ML (2006) Chemical and enzymatic interesterification of lipids for use in food. In: Gunstone FD (ed) Modifying lipids use food, Woodhead, Sawston, pp 234–272

    Google Scholar 

  99. Asif M (2011) Process advantages and product benefits of interesterification in oils and fats. Int J Nutr Pharmacol Neurol Dis 1:134. https://doi.org/10.4103/2231-0738.84203

    Article  CAS  Google Scholar 

  100. Coleman M, Macrae A (1976) Fat process and composition, GB 1577933

    Google Scholar 

  101. Halling P, Macrae A (1989) Fat processing, US4863860

    Google Scholar 

  102. Wisdom RA, Dunnill P, Lilly MD, Macrae A (1984) Enzymic interesterification of fats: factors influencing the choice of support for immobilized lipase. Enzym Microb Technol 6:443–446. https://doi.org/10.1016/0141-0229(84)90093-0

    Article  CAS  Google Scholar 

  103. Coleman MH, Macrae AR (1979) Fat process and composition, US4275081

    Google Scholar 

  104. Macrae AR (1985) Microbial lipases as catalysts for the interesterification of oils and fats. In: Ratledge C, Dawson P, Rattray J (eds) Biotechnol. Oils fats Ind. Amer Oil Chem Society, Champaign, pp 189–198

    Google Scholar 

  105. Sawamura N (1988) Transesterification of fats and oils. Ann N Y Acad Sci 542:266–269. https://doi.org/10.1111/j.1749-6632.1988.tb25840.x

    Article  CAS  Google Scholar 

  106. Matsuo T, Sawamura N, Hashimoto Y, Hashida W (1981) EP0035883 Method for enzymatic interesterification of lipid and enzyme used therein, EP0035883

    Google Scholar 

  107. Matsuo T, Sawamura N, Hashimoto Y, Hashida W (1979) Producing a cacao butter substitute by transesterification of fats and oils, GB2035359A

    Google Scholar 

  108. Svendsen A, Skjot M, Brask J, Vind J, Patkar SA (2007) Immobilised enzymes, WO 2007/080197 A2

    Google Scholar 

  109. Fernandez-Lafuente R (2010) Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. J Mol Catal B Enzym 62:197–212. https://doi.org/10.1016/J.MOLCATB.2009.11.010

    Article  CAS  Google Scholar 

  110. Holm HC, Cowan D (2008) The evolution of enzymatic interesterification in the oils and fats industry. Eur J Lipid Sci Technol 110:679–691. https://doi.org/10.1002/ejlt.200800100

    Article  CAS  Google Scholar 

  111. De Greyt W, Dijkstra AJ (2008) Fractionation and interesterification. In: Dijkstra AJ, Hamilton RJ, Hamm W (eds) Trans fat acids. Blackwell, New York, pp 181–202

    Chapter  Google Scholar 

  112. Talbot G, Bhaggan K (2010) The “friendly” way to process fats. Food Mark Technol:4–7

    Google Scholar 

  113. Akoh C, Xu X (2002) Enzymatic production of Betapol and other specialty fats. In: Kuo TM, Gardner H (eds) Lipid Biotechnol. Marcel Dekker, New York, pp 461–478. https://www.crcpress.com/Lipid-Biotechnology/author/p/book/9780203908198. Accessed 2 Jan 2019

    Google Scholar 

  114. Hooper L, Thompson RL, Harrison RA, Summerbell CD, Moore H, Worthington HV, Durrington PN, Ness AR, Capps NE, Davey Smith G, Riemersma RA, Ebrahim SBJ (2004) Omega 3 fatty acids for prevention and treatment of cardiovascular disease. Cochrane Database Syst Rev 18:CD003177. https://doi.org/10.1002/14651858.CD003177.pub2

    Article  Google Scholar 

  115. Radack K, Deck C, Huster G (1991) The effects of low doses of n-3 fatty acid supplementation on blood pressure in hypertensive subjects. Arch Intern Med 151:1173. https://doi.org/10.1001/archinte.1991.00400060097017

    Article  CAS  PubMed  Google Scholar 

  116. O’Keefe JH, Harris WS (2000) Omega-3 fatty acids: time for clinical implementation? Am J Cardiol 85:1239–1241. https://doi.org/10.1016/S0002-9149(00)00735-9

    Article  PubMed  Google Scholar 

  117. Gudmundur G, Halldorsson A, Thorstad O (2003) Lipase-catalysed esterification of marine oil, US 7491522B2

    Google Scholar 

  118. Kralovec J, Wang W, Barrow JC (2009) Enzymatic modification of oil, WO 2009/040676A2

    Google Scholar 

  119. Kralovec J, Wang W (2006) Immobilized enzymes and methods of using thereof, EP2439268B1

    Google Scholar 

  120. Brodelius P (1978) Industrial applications of immobilized biocatalysts. In: Adv. Biochem. Eng, vol 10. Springer, Berlin, pp 75–129. https://doi.org/10.1007/BFb0004472

    Chapter  Google Scholar 

  121. Panesar PS, Kumari S, Panesar R (2010) Potential applications of immobilized β-galactosidase in food processing industries. Enzyme Res (2010):473137. https://doi.org/10.4061/2010/473137

  122. Griffiths MW, Muir DD, Phillips JD (1979) Thermal stable beta-galactosidase, US4332895

    Google Scholar 

  123. NIIR Board of Consultants & Engineers (2005) Enzymes bio-technology handbook. Asia Pacific Business Press, Delhi

    Google Scholar 

  124. Kidd PM (2007) Omega-3 DHA and EPA for cognition, behavior, and mood: clinical findings and structural-functional synergies with cell membrane phospholipids. Altern Med Rev 12:207–227

    PubMed  Google Scholar 

  125. Peretti N, Marcil V, Drouin E, Levy E (2005) Mechanisms of lipid malabsorption in cystic fibrosis: the impact of essential fatty acids deficiency. Nutr Metab 2:11–29. https://doi.org/10.1186/1743-7075-2-11

    Article  CAS  Google Scholar 

  126. C. Fibrosis Foundation, Patient registry annual data report 2015 (2015) https://www.cff.org/Our-Research/CF-Patient-Registry/2015-Patient-Registry-Annual-Data-Report.pdf. Accessed 28 Jan 2019

  127. Gallotto R, Loring GL, Gary K, Park ES, Brown DJ, Schoevaart WRK, Van Vliet MCA (2017) Enteral feeding device and related methods of use, US 20170105903

    Google Scholar 

  128. Margolin AL (2013) Methods, compositions, and devices for supplying dietary fatty acid needs, WO 2013123139A8

    Google Scholar 

  129. Center for Food Safety and Applied Nutrition (2012) Environmental Decisions - Environmental Decision Memo for Food Contact Notification No. 001190 2–5. https://wayback.archive-it.org/7993/20171030193105/https://www.fda.gov/Food/IngredientsPackagingLabeling/EnvironmentalDecisions/ucm443618.htm. Accessed 28 Jan 2019

  130. Relizorb (Immobilized lipase cartridge) - Formulas, (n.d.). https://www.relizorb.com/docs/pdfs/Compatible-Formulas-and-Pumps.pdf. Accessed 28 Jan 2019

  131. Freedman S, Orenstein D, Black P, Brown P, McCoy K, Stevens J, Grujic D, Clayton R (2017) Increased fat absorption from enteral formula through an in-line digestive cartridge in patients with cystic fibrosis. J Pediatr Gastroenterol Nutr 65:97–101. https://doi.org/10.1097/MPG.0000000000001617

    Article  CAS  PubMed  Google Scholar 

  132. Hosu O, Mirel S, Săndulescu R, Cristea C (2017) Minireview: smart tattoo, microneedle, point-of-care, and phone-based biosensors for medical screening, diagnosis, and monitoring. Anal Lett 52:78–92. https://doi.org/10.1080/00032719.2017.1391826

    Article  CAS  Google Scholar 

  133. Habimana J d D, Ji J, Sun X (2018) Minireview: trends in optical-based biosensors for point-of-care bacterial pathogen detection for food safety and clinical diagnostics. Anal Lett 0:1–34. https://doi.org/10.1080/00032719.2018.1458104

    Article  CAS  Google Scholar 

  134. Serban S, Danet AF, El Murr N (2004) Rapid and sensitive automated method for glucose monitoring in wine processing. J Agric Food Chem 52:5588–5592. https://doi.org/10.1021/JF0494229

  135. Gazel N, Yildiz HB (2016) Enzyme-based biosensors in food industry via surface modifications. In: Surf. Treat. Biol. Chem. Phys. Appl. Wiley, Weinheim, pp 227–252. https://doi.org/10.1002/9783527698813.ch7.

    Chapter  Google Scholar 

  136. Verma ML (2017) Nanobiotechnology advances in enzymatic biosensors for the Agri-food industry. Environ Chem Lett 15:555–560. https://doi.org/10.1007/s10311-017-0640-4

    Article  CAS  Google Scholar 

  137. Hart JP, Serban S, Jones LJ, Biddle N, Pittson R, Drago GA (2006) Selective and rapid biosensor integrated into a commercial hand-held instrument for the measurement of ammonium ion in sewage effluent. Anal Lett 39:1657–1667. https://doi.org/10.1080/00032710600713545

    Article  CAS  Google Scholar 

  138. Global Test Strip Market Research Report- 2021 | MRFR (n.d.) https://www.marketresearchfuture.com/reports/test-strip-market-672. Accessed 28 Jan 2019

  139. Rajangam B, Daniel DK, Krastanov AI (2018) Progress in enzyme inhibition based detection of pesticides. Eng Life Sci 18:4–19. https://doi.org/10.1002/elsc.201700028

    Article  CAS  Google Scholar 

  140. Arduini F, Cinti S, Scognamiglio V, Moscone D (2016) Nanomaterials in electrochemical biosensors for pesticide detection: advances and challenges in food analysis. Microchim Acta 183:2063–2083. https://doi.org/10.1007/s00604-016-1858-8

    Article  CAS  Google Scholar 

  141. Pohanka M (2013) Cholinesterases in biorecognition and biosensors construction: a review. Anal Lett 46:1849–1868. https://doi.org/10.1080/00032719.2013.780240

    Article  CAS  Google Scholar 

  142. Martinkova P, Kostelnik A, Valek T, Pohanka M (2017) Main streams in the construction of biosensors and their applications. Int J Electrochem Sci 12:7386–7403. https://doi.org/10.20964/2017.08.02

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Basso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Basso, A., Serban, S. (2020). Overview of Immobilized Enzymes’ Applications in Pharmaceutical, Chemical, and Food Industry. In: Guisan, J., Bolivar, J., López-Gallego, F., Rocha-Martín, J. (eds) Immobilization of Enzymes and Cells. Methods in Molecular Biology, vol 2100. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0215-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0215-7_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0214-0

  • Online ISBN: 978-1-0716-0215-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics