Skip to main content

Enzyme Immobilization in Wall-Coated Flow Microreactors

  • Protocol
  • First Online:
Immobilization of Enzymes and Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2100))

Abstract

Flow microreactors are emergent engineering tools for the development of continuous biocatalytic transformations. Exploiting enzymes in continuous mode requires their retention for multiple rounds of conversions. To achieve this goal, immobilizing the enzymes on microchannel walls is a promising approach. However, protein immobilization within closed structures is difficult. Here, we describe a methodology based on the confluent design of enzyme and microreactor; fusion to the silica-binding module Zbasic2 is used to engineer enzymes for high-affinity-oriented attachment to the plain wall surface of glass microchannels. As a practical case, the methodology is described using a sucrose phosphorylase; the assayed reaction is synthesis of α-d-glucose 1-phosphate (αGlc 1-P) from sucrose and phosphate using the immobilized enzyme microreactor. Procedures of enzyme immobilization, reactor characterization, and operation are described. The methodology is applicable for any other enzymes fused to Zbasic2 and silica (glass)-based microfluidic reactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tamborini L, Fernandes P, Paradisi F, Molinari F (2018) Flow bioreactors as complementary tools for biocatalytic process intensification. Trends Biotechnol 36:73–88. https://doi.org/10.1016/j.tibtech.2017.09.005

    Article  CAS  PubMed  Google Scholar 

  2. Gutmann B, Cantillo D, Kappe CO (2015) Continuous-flow technology-a tool for the safe manufacturing of active pharmaceutical ingredients. Angew Chem Int Ed 54:6688–6728. https://doi.org/10.1002/anie.201409318

    Article  CAS  Google Scholar 

  3. Wohlgemuth R, Plazl I, Žnidaršič-Plazl P et al (2015) Microscale technology and biocatalytic processes: opportunities and challenges for synthesis. Trends Biotechnol 33:302–314. https://doi.org/10.1016/j.tibtech.2015.02.010

    Article  CAS  PubMed  Google Scholar 

  4. Munirathinam R, Huskens J, Verboom W (2015) Supported catalysis in continuous-flow microreactors. Adv Synth Catal 357:1093–1123. https://doi.org/10.1002/adsc.201401081

    Article  CAS  Google Scholar 

  5. Rossetti I (2018) Continuous flow (micro-)reactors for heterogeneously catalyzed reactions: main design and modelling issues. Catal Today 308:20–31. https://doi.org/10.1016/j.cattod.2017.09.040

    Article  CAS  Google Scholar 

  6. Bolivar JM, Wiesbauer J, Nidetzky B (2011) Biotransformations in microstructured reactors: more than flowing with the stream? Trends Biotechnol 29:333–342

    Article  CAS  Google Scholar 

  7. Bolivar JM, Tribulato MA, Petrasek Z, Nidetzky B (2016) Let the substrate flow, not the enzyme: practical immobilization of d-amino acid oxidase in a glass microreactor for effective biocatalytic conversions. Biotechnol Bioeng 113:2342–2349. https://doi.org/10.1002/bit.26011

    Article  CAS  PubMed  Google Scholar 

  8. Valikhani D, Bolivar JM, Pfeiffer M, Nidetzky B (2017) Multivalency effects on the immobilization of sucrose phosphorylase in flow microchannels and their use in the development of a high-performance biocatalytic microreactor. ChemCatChem 9:161–166. https://doi.org/10.1002/cctc.201601019

    Article  CAS  Google Scholar 

  9. Miložič N, Lubej M, Lakner M et al (2017) Theoretical and experimental study of enzyme kinetics in a microreactor system with surface-immobilized biocatalyst. Chem Eng J 313:374–381. https://doi.org/10.1016/j.cej.2016.12.030

    Article  CAS  Google Scholar 

  10. Bolivar JM, Nidetzky B (2013) Smart enzyme immobilization in microstructured reactors. Chimica Oggi/Chemistry Today 31:50–54

    CAS  Google Scholar 

  11. Hernandez K, Fernandez-Lafuente R (2011) Control of protein immobilization: coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzym Microb Technol 48:107–122. https://doi.org/10.1016/j.enzmictec.2010.10.003

    Article  CAS  Google Scholar 

  12. Bolivar JM, Nidetzky B (2012) Positively charged mini-protein Zbasic2 as a highly efficient silica binding module: opportunities for enzyme immobilization on unmodified silica supports. Langmuir 28:10040–10049. https://doi.org/10.1021/la3012348

    Article  CAS  PubMed  Google Scholar 

  13. Bolivar JM, Gascon V, Marquez-Alvarez C et al (2017) Oriented coimmobilization of oxidase and catalase on tailor-made ordered mesoporous silica. Langmuir 33:5065–5076. https://doi.org/10.1021/acs.langmuir.7b00441

    Article  CAS  PubMed  Google Scholar 

  14. Valikhani D, Bolivar JM, Viefhues M et al (2017) A spring in performance: silica nanosprings boost enzyme immobilization in microfluidic channels. ACS Appl Mater Interfaces 9:34641–34649. https://doi.org/10.1021/acsami.7b09875

    Article  CAS  PubMed  Google Scholar 

  15. Goedl C, Sawangwan T, Mueller M et al (2008) A high-yielding biocatalytic process for the production of 2-O-(alpha-D-glucopyranosyl)-sn-glycerol, a natural osmolyte and useful moisturizing ingredient. Angew Chem Int Ed Engl 47:10086–10089. https://doi.org/10.1002/anie.200803562

    Article  CAS  PubMed  Google Scholar 

  16. Goedl C, Schwarz A, Minani A, Nidetzky B (2007) Recombinant sucrose phosphorylase from Leuconostoc mesenteroides: characterization, kinetic studies of transglucosylation, and application of immobilised enzyme for production of alpha-D-glucose 1-phosphate. J Biotechnol 129:77–86. https://doi.org/10.1016/j.jbiotec.2006.11.019

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Nidetzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Valikhani, D., Bolivar, J.M., Nidetzky, B. (2020). Enzyme Immobilization in Wall-Coated Flow Microreactors. In: Guisan, J., Bolivar, J., López-Gallego, F., Rocha-Martín, J. (eds) Immobilization of Enzymes and Cells. Methods in Molecular Biology, vol 2100. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0215-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0215-7_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0214-0

  • Online ISBN: 978-1-0716-0215-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics