Skip to main content

Identification of Cell Surface Targets for CAR T Cell Immunotherapy

  • Protocol
  • First Online:
Cell Reprogramming for Immunotherapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2097))

Abstract

Immunotherapy has become a prominent approach for the treatment of cancer. Targeted killing of malignant cells by adoptive transfer of chimeric antigen receptor (CAR) T cells is a promising immunotherapy technique in oncology. However, the identification of cell surface antigens unique to tumor cells against which CAR T cells can be engineered has historically been challenging and not well documented in solid tumors. Here, we describe a generalized method to construct a cell subtype-specific surface antigen profile (i.e., surfaceome) from cell lines and identify high-confidence antigens as effective targets for CAR T cell therapy by integrating transcriptomics and cell surface proteomics. This method is widely applicable to all therapies utilizing CAR T cells, such as cancer, as well as infectious and autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chaplin DD (2006) 1. Overview of the human immune response. J Allergy Clin Immunol 117(2 Suppl Mini-Primer):S430–S435. https://doi.org/10.1016/j.jaci.2005.09.034

    Article  CAS  PubMed  Google Scholar 

  2. Sadelain M, Brentjens R, Riviere I (2013) The basic principles of chimeric antigen receptor design. Cancer Discov 3(4):388–398. https://doi.org/10.1158/2159-8290.CD-12-0548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Marincola FM, Jaffee EM, Hicklin DJ, Ferrone S (2000) Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol 74:181–273

    Article  CAS  PubMed  Google Scholar 

  4. Seliger B, Cabrera T, Garrido F, Ferrone S (2002) HLA class I antigen abnormalities and immune escape by malignant cells. Semin Cancer Biol 12(1):3–13. https://doi.org/10.1006/scbi.2001.0404

    Article  CAS  PubMed  Google Scholar 

  5. Hale M, Mesojednik T, Romano Ibarra GS, Sahni J, Bernard A, Sommer K, Scharenberg AM, Rawlings DJ, Wagner TA (2017) Engineering HIV-resistant, anti-HIV chimeric antigen receptor T cells. Mol Ther 25(3):570–579. https://doi.org/10.1016/j.ymthe.2016.12.023

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Collins KL, Chen BK, Kalams SA, Walker BD, Baltimore D (1998) HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391(6665):397–401. https://doi.org/10.1038/34929

    Article  CAS  PubMed  Google Scholar 

  7. Lipowska-Bhalla G, Gilham DE, Hawkins RE, Rothwell DG (2012) Targeted immunotherapy of cancer with CAR T cells: achievements and challenges. Cancer Immunol Immunother 61(7):953–962. https://doi.org/10.1007/s00262-012-1254-0

    Article  CAS  PubMed  Google Scholar 

  8. Fesnak AD, June CH, Levine BL (2016) Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer 16(9):566–581. https://doi.org/10.1038/nrc.2016.97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bonifant CL, Jackson HJ, Brentjens RJ, Curran KJ (2016) Toxicity and management in CAR T-cell therapy. Mol Ther Oncolytics 3:16011. https://doi.org/10.1038/mto.2016.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Vogel C, Marcotte EM (2012) Insights into the regulation of protein abundance from proteomic and transcriptomic analyses. Nat Rev Genet 13(4):227–232. https://doi.org/10.1038/nrg3185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee JK, Bangayan NJ, Chai T, Smith BA, Pariva TE, Yun S, Vashisht A, Zhang Q, Park JW, Corey E, Huang J, Graeber TG, Wohlschlegel J, Witte ON (2018) Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of advanced prostate cancer. Proc Natl Acad Sci U S A 115(19):E4473–E4482. https://doi.org/10.1073/pnas.1802354115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bausch-Fluck D, Hofmann A, Bock T, Frei AP, Cerciello F, Jacobs A, Moest H, Omasits U, Gundry RL, Yoon C, Schiess R, Schmidt A, Mirkowska P, Hartlova A, Van Eyk JE, Bourquin JP, Aebersold R, Boheler KR, Zandstra P, Wollscheid B (2015) A mass spectrometric-derived cell surface protein atlas. PLoS One 10(3):e0121314. https://doi.org/10.1371/journal.pone.0121314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Plaisier SB, Taschereau R, Wong JA, Graeber TG (2010) Rank-rank hypergeometric overlap: identification of statistically significant overlap between gene-expression signatures. Nucleic Acids Res 38(17):e169. https://doi.org/10.1093/nar/gkq636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vivian J, Rao AA, Nothaft FA, Ketchum C, Armstrong J, Novak A, Pfeil J, Narkizian J, Deran AD, Musselman-Brown A, Schmidt H, Amstutz P, Craft B, Goldman M, Rosenbloom K, Cline M, O’Connor B, Hanna M, Birger C, Kent WJ, Patterson DA, Joseph AD, Zhu J, Zaranek S, Getz G, Haussler D, Paten B (2017) Toil enables reproducible, open source, big biomedical data analyses. Nat Biotechnol 35(4):314–316. https://doi.org/10.1038/nbt.3772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550. https://doi.org/10.1186/s13059-014-0550-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the UCLA Technology Center for Genomics & Bioinformatics and the UCLA Proteomics Research Center for providing assistance with the workflows. This work was supported by the Department of Defense Prostate Cancer Research Program Physician Research Award (W81XWH-17-1-0129) and a Prostate Cancer Young Investigator Award to J.K.L.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John K. Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

DeLucia, D.C., Lee, J.K. (2020). Identification of Cell Surface Targets for CAR T Cell Immunotherapy. In: Katz, S., Rabinovich, P. (eds) Cell Reprogramming for Immunotherapy. Methods in Molecular Biology, vol 2097. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0203-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0203-4_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0202-7

  • Online ISBN: 978-1-0716-0203-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics