Skip to main content

HEK293 Cell-Based Bioprocess Development at Bench Scale by Means of Online Monitoring in Shake Flasks (RAMOS and SFR)

  • Protocol
  • First Online:
Animal Cell Biotechnology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2095))

Abstract

The platforms for bioprocess development have been developed in parallel to the needs of the manufacturing industry of biopharmaceuticals, aiming to ensure the quality and safety of their products. In this sense, Quality by Design (QbD) and Process Analytical Technology (PAT) have become the pillars for quality control and quality assurance.

A new combination of Shake Flask Reader (SFR) and Respiration Activity Monitoring System for online determination of OTR and CTR (RAMOS) allows online monitoring of main culture parameters needed for bioprocess development (pH, pO2, OTR, CTR, and QR) as presented below. Eventually, a case study of the application of the combination of SFR-RAMOS system is presented. The case study discloses the optimization of HEK293 cells cultures through the manipulation of their metabolic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Butler M (2005) Animal cell cultures: recent achievements and perspectives in the production of biopharmaceuticals. Appl Microbiol Biotechnol 68:283–291

    Article  CAS  Google Scholar 

  2. Wurm FM (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat Biotechnol 22:1393–1398

    Article  CAS  Google Scholar 

  3. Moreira A (2007) The evolution of protein expression and cell culture. BioPharm Int 20:10

    Google Scholar 

  4. Butler M, Spearman M (2014) The choice of mammalian cell host and possibilities for glycosylation engineering. Curr Opin Biotechnol 30:107–112

    Article  CAS  Google Scholar 

  5. Dumont J, Euwart D, Mei B et al (2016) Human cell lines for biopharmaceutical manufacturing: history, status, and future perspectives. Crit Rev Biotechnol 36:1110–1122

    Article  CAS  Google Scholar 

  6. Román R, Miret J, Scalia F, Casablancas A, Lecina M, Cairó JJ (2016) Enhancing heterologous protein expression and secretion in HEK293 cells by means of combination of CMV promoter and IFNα2 signal peptide. J Biotechnol 239:57–60

    Article  Google Scholar 

  7. Kim JY, Kim YG, Lee GM (2012) CHO cells in biotechnology for production of recombinant proteins: current state and further potential. Appl Microbiol Biotechnol 93:917–930

    Article  CAS  Google Scholar 

  8. Liste-Calleja L, Lecina M, Cairó JJ (2014) HEK293 cell culture media study towards bioprocess optimization: animal derived component free and animal derived component containing platforms. J Biosci Bioeng 117:471–477

    Article  CAS  Google Scholar 

  9. Delenda C, Chillon M, Douar AM, Merten OW (2007) Cells for gene therapy and vector production. In: Pörtner R (ed) Animal cell biotechnology, Methods in biotechnology, vol 24. Humana Press, Totowa, NJ

    Chapter  Google Scholar 

  10. Durocher Y, Butler M (2009) Expression systems for therapeutic glycoprotein production. Curr Opin Biotechnol 20:700–707

    Article  CAS  Google Scholar 

  11. Hassell T, Gleave S, Butler M (1991) Growth inhibition in animal cell culture. Appl Biochem Biotechnol 30:29–41

    Article  CAS  Google Scholar 

  12. Gagnon M, Hiller G, Luan Y-T et al (2011) High-End pH controlled delivery of glucose effectively suppresses lactate accumulation in CHO Fed-batch cultures. Biotechnol Bioeng 108:1328–1337

    Article  CAS  Google Scholar 

  13. Martínez VS, Dietmair S, Quek L-E et al (2013) Flux balance analysis of CHO cells before and after a metabolic switch from lactate production to consumption. Biotechnol Bioeng 110:660–666

    Article  Google Scholar 

  14. Liste-Calleja L, Lecina M, Lopez-Repullo J et al (2015) Lactate and glucose concomitant consumption as a self-regulated pH detoxification mechanism in HEK293 cell cultures. Appl Microbiol Biotechnol 99:9951–9960

    Article  CAS  Google Scholar 

  15. Halestrap AP, Price NT (1999) The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J 343:281–299

    Article  CAS  Google Scholar 

  16. San Martín A, Ceballo S, Ruminot I et al (2013) A genetically encoded FRET lactate sensor and its use to detect the Warburg effect in single cancer cells. PLoS One 8(2):e57712

    Article  Google Scholar 

  17. Martínez-Monge I, Albiol J, Lecina M et al (2019) Metabolic flux balance analysis during lactate and glucose concomitant consumption in HEK293 cell cultures. Biotechnol Bioeng 116:388–404. https://doi.org/10.1002/bit.26858

    Article  CAS  PubMed  Google Scholar 

  18. Yu LX, Amidon G, Khan MA et al (2014) Understanding pharmaceutical quality by design. AAPS J 16:771–783

    Article  CAS  Google Scholar 

  19. Rathore AS, Bhambure R, Ghare V (2010) Process analytical technology PAT for biopharmaceutical products. Anal Bioanal Chem 398:137–154

    Article  CAS  Google Scholar 

  20. Zhao L, Fu H-Y, Zhou W et al (2015) Advances in process monitoring tools for cell culture bioprocesses. Eng Life Sci 15:459–468

    Article  CAS  Google Scholar 

  21. Junker BH, Reddy J, Gbewonyo K et al (1994) On-line and in-situ monitoring technology for cell density measurement in microbial and animal cell cultures. Bioprocess Eng 10:195–207

    Article  Google Scholar 

  22. Höpfner T, Bluma A, Rudolph G et al (2010) A review of non-invasive optical-based image analysis systems for continuous bioprocess monitoring. Bioprocess Biosyst Eng 33:247–256

    Article  Google Scholar 

  23. Ruffieux PA, von Stockar U, Marison IW (1998) Measurement of volumetric (OUR) and determination of specific (qO2) oxygen uptake rates in animal cell cultures. J Biotechnol 63:85–95

    Article  CAS  Google Scholar 

  24. Casablancas A, Gámez X et al (2013) Comparison of control strategies for fed-batch culture of hybridoma cells based on on-line monitoring of oxygen uptake rate, optical cell density and glucose concentration. J Chem Technol Biotechnol 88:1680–1689

    Article  CAS  Google Scholar 

  25. Sauer PW, Burky JE, Wesson MC et al (2000) A high-yielding, generic fed-batch cell culture process for production of recombinant antibodies. Biotechnol Bioeng 67:585–597

    Article  CAS  Google Scholar 

  26. Gálvez J, Lecina M, Solà C et al (2012) Optimization of HEK-293S cell cultures for the production of adenoviral vectors in bioreactors using on-line OUR measurements. J Biotechnol 157:214–222

    Article  Google Scholar 

  27. Anderlei T, Zang W, Papaspyrou M, Buechs J (2004) Online respiration activity measurement OTR, CTR, RQ in shake flasks. Biochem Eng J 17:187194

    Article  Google Scholar 

  28. Fontova A, Lecina M, López-Repullo J et al (2018) A simplified implementation of the stationary liquid mass balance method for on-line OUR monitoring in animal cell cultures. J Chem Technol Biotechnol 93:1757–1766

    Article  CAS  Google Scholar 

  29. Lecina M, Soley A, Gràcia J et al (2006) Application of online OUR measurements to detect actions points to improve baculovirus-insect cell cultures in bioreactors. J Biotechnol 125:385–394

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martí Lecina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Anderlei, T., Keebler, M.V., Cairó, J.J., Lecina, M. (2020). HEK293 Cell-Based Bioprocess Development at Bench Scale by Means of Online Monitoring in Shake Flasks (RAMOS and SFR). In: Pörtner, R. (eds) Animal Cell Biotechnology. Methods in Molecular Biology, vol 2095. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0191-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0191-4_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0190-7

  • Online ISBN: 978-1-0716-0191-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics