Skip to main content

Near-Physiological Cell Cycle Synchronization with Countercurrent Centrifugal Elutriation

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2095))

Abstract

The bioreactor conditions and cell diversity in mammalian cell cultures are often regarded as homogeneous. Recently, the influence of various kinds of heterogeneities on production rates receives increasing attention. Besides spatial gradients within the cultivation system, the variation between cell populations and the progress of the cells through the cell cycle can affect the dynamics of the cultivation process. Strong metabolic up- and down-regulations leading to variable productivities, even in exponentially growing cell cultures, have been identified in CHO cell cultivations. Consequently, scientific studies of cell cycle-related effects and metabolic regulations require experiments utilizing cell cycle-enriched subpopulations. Importantly, the enrichment procedure itself must not strongly interfere with the cell culture under investigation. Such subpopulations can be generated by near-physiological countercurrent centrifugal elutriation, which is described in the following chapter. At first, a brief overview regarding the cell cycle, currently identified effects and commonly used methods, and their applicability is outlined. Then, the experimental setup and the synchronization itself are explained.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

Abbreviations

CHO:

Chinese hamster ovary

DNA:

Deoxyribonucleic acid

DAPI:

4′,6-Diamidino-2-phenylindole

FSC:

Forward scatter

G1 phase:

Gap phase 1

G2 phase:

Gap phase 2

HEK:

Human embryonic kidney

M:

Mitosis

PBS:

Phosphate-buffered saline

S phase:

Synthesis phase

SSC:

Side scatter

%sync:

Percentage of cells in a cell cycle phase after synchronization

%non-sync:

Percentage of cells in a cell cycle phase in the preculture

YΩ :

Enrichment factor

References

  1. Brunner M, Braun P, Doppler P, Posch C, Behrens D, Herwig C, Fricke J (2017) The impact of pH inhomogeneities on CHO cell physiology and fed-batch process performance – two-compartment scale-down modelling and intracellular pH excursion. Biotechnol J 12(7):1600633. https://doi.org/10.1002/biot.201600633

    Article  CAS  Google Scholar 

  2. Lara AR, Galindo E, Ramirez OT, Palomares LA (2006) Living with heterogeneities in bioreactors: understanding the effects of environmental gradients on cells. Mol Biotechnol 34(3):355–381. https://doi.org/10.1385/MB:34:3:355

    Article  CAS  PubMed  Google Scholar 

  3. Pilbrough W, Munro TP, Gray P (2009) Intraclonal protein expression heterogeneity in recombinant CHO cells. PLoS One 4(12):e8432. https://doi.org/10.1371/journal.pone.0008432.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Platas Barradas O, Jandt U, Becker M, Bahnemann J, Pörtner R, Zeng A-P (2015) Synchronized mammalian cell culture: Part I—A physical strategy for synchronized cultivation under physiological conditions. Biotechnol Progr 31(1):165–174. https://doi.org/10.1002/btpr.1944

    Article  CAS  Google Scholar 

  5. Möller J, Korte K, Pörtner R, Zeng A-P, Jandt U (2018) Model-based identification of cell-cycle-dependent metabolism and putative autocrine effects in antibody producing CHO cell culture. Biotechnol Bioeng 115:2996–3008. https://doi.org/10.1002/bit.26828

    Article  CAS  PubMed  Google Scholar 

  6. Kohrman AQ, Matus DQ (2017) Divide or conquer: cell cycle regulation of invasive behavior. Trends Cell Biol 27(1):12–25. https://doi.org/10.1016/j.tcb.2016.08.003

    Article  CAS  PubMed  Google Scholar 

  7. Cooper S, Gonzalez-Hernandez M (2009) Experimental reconsideration of the utility of serum starvation as a method for synchronizing mammalian cells. Cell Biol Int 33(1):71–77. https://doi.org/10.1016/j.cellbi.2008.09.009

    Article  CAS  PubMed  Google Scholar 

  8. Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2004) Molekularbiologie der Zelle (German Edition). Wiley-VCH-Verlag GmbH, German. ISBN: 978-3-527-34072-9

    Google Scholar 

  9. Cooper S (1998) On the proposal of a G0 phase and the restriction point. FASEB J 12(3):367–373. https://doi.org/10.1096/fasebj.12.3.367

    Article  CAS  PubMed  Google Scholar 

  10. Jandt U, Platas Barradas O, Pörtner R, Zeng A-P (2014) Mammalian cell culture synchronization under physiological conditions and population dynamic simulation. Appl Microbiol Biot 98(10):4311–4319. https://doi.org/10.1007/s00253-014-5553-6

    Article  CAS  Google Scholar 

  11. Jandt U, Platas Barradas O, Pörtner R, Zeng A-P (2015) Synchronized mammalian cell culture: Part II—population ensemble modeling and analysis for development of reproducible processes. Biotechnol Prog 31(1):175–185. https://doi.org/10.1002/btpr.2006

    Article  CAS  PubMed  Google Scholar 

  12. Castillo AE, Fuge G, Jandt U, Zeng A-P (2015) Growth kinetics and validation of near-physiologically synchronized HEK293s cultures. Eng Life Sci 15(5):509–518. https://doi.org/10.1002/elsc.201400224

    Article  CAS  Google Scholar 

  13. Möller J, Bhat K, Riecken K, Pörtner R, Zeng A‐P, Jandt U (2019) Process‐induced cell cycle oscillations in CHO cultures: Online monitoring and model‐based investigation. Biotechnol Bioeng 116:2931–2943. https://doi.org/10.1002/bit.27124

    Article  CAS  PubMed  Google Scholar 

  14. Fuge G, Zeng A-P, Jandt U (2017) Weak cell cycle dependency but strong distortive effects of transfection with lipofectamine 2000 in near-physiologically synchronized cell culture. Eng Life Sci 17(4):348–356. https://doi.org/10.1002/elsc.201600113

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Jandt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Möller, J., Korte, K., Pörtner, R., Zeng, AP., Jandt, U. (2020). Near-Physiological Cell Cycle Synchronization with Countercurrent Centrifugal Elutriation. In: Pörtner, R. (eds) Animal Cell Biotechnology. Methods in Molecular Biology, vol 2095. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0191-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0191-4_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0190-7

  • Online ISBN: 978-1-0716-0191-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics