Skip to main content

Molecular Modeling of the Interaction Between Stem Cell Peptide and Immune Receptor in Plants

  • Protocol
  • First Online:
Plant Stem Cells

Abstract

Molecular docking enables comprehensive exploration of interactions between chemical moieties and proteins. Modeling and docking approaches are useful to determine the three-dimensional (3D) structure of experimentally uncrystallized proteins and subsequently their interactions with various inhibitors and activators or peptides. Here, we describe a protocol for carrying out molecular modeling and docking of stem cell peptide CLV3p on plant innate immune receptor FLS2.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329. https://doi.org/10.1038/nature05286

    Article  CAS  PubMed  Google Scholar 

  2. Newman M-A, Sundelin T, Nielsen JT, Erbs G (2013) MAMP (microbe-associated molecular pattern) triggered immunity in plants. Front Plant Sci 4:139. https://doi.org/10.3389/fpls.2013.00139

    Article  PubMed Central  Google Scholar 

  3. Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406. https://doi.org/10.1146/annurev.arplant.57.032905.105346

    Article  CAS  Google Scholar 

  4. Lee H, Chah O-K, Sheen J (2011) Stem-cell-triggered immunity through CLV3p-FLS2 signalling. Nature 473:376–379. https://doi.org/10.1038/nature09958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sun Y, Li L, Macho AP et al (2013) Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342:624–628. https://doi.org/10.1126/science.1243825

    Article  CAS  Google Scholar 

  6. Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    Article  CAS  Google Scholar 

  7. Meziane H, VAN DER Sluis I, VAN Loon LC et al (2005) Determinants of Pseudomonas putida WCS358 involved in inducing systemic resistance in plants. Mol Plant Pathol 6:177–185. https://doi.org/10.1111/j.1364-3703.2005.00276.x

    Article  PubMed  Google Scholar 

  8. Mueller K, Chinchilla D, Albert M et al (2012) Contamination risks in work with synthetic peptides: flg22 as an example of a pirate in commercial peptide preparations. Plant Cell 24:3193–3197. https://doi.org/10.1105/tpc.111.093815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Segonzac C, Nimchuk ZL, Beck M et al (2012) The shoot apical meristem regulatory peptide CLV3 does not activate innate immunity. Plant Cell 24:3186–3192. https://doi.org/10.1105/tpc.111.091264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Srivastava M, Gupta SK, Abhilash PC, Singh N (2012) Structure prediction and binding sites analysis of curcin protein of Jatropha curcas using computational approaches. J Mol Model 18:2971–2979. https://doi.org/10.1007/s00894-011-1320-0

    Article  CAS  PubMed  Google Scholar 

  11. Zhang Y (2009) Protein structure prediction: is it useful? Curr Opin Struct Biol 19:145–155. https://doi.org/10.1016/j.sbi.2009.02.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815. https://doi.org/10.1006/jmbi.1993.1626

    Article  CAS  PubMed  Google Scholar 

  13. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  14. Rodrigues JPGLM, Levitt M, Chopra G (2012) KoBaMIN: a knowledge-based minimization web server for protein structure refinement. Nucleic Acids Res 40:W323–W328. https://doi.org/10.1093/nar/gks376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Laskowski RA, Rullmannn JA, MacArthur MW et al (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8:477–486

    Article  CAS  Google Scholar 

  16. Laskowski RA, Hutchinson EG, Michie AD et al (1997) PDBsum: a web-based database of summaries and analyses of all PDB structures. Trends Biochem Sci 22:488–490

    Article  CAS  Google Scholar 

  17. Pierce B, Tong W, Weng Z (2005) M-ZDOCK: a grid-based approach for Cn symmetric multimer docking. Bioinformatics 21:1472–1478. https://doi.org/10.1093/bioinformatics/bti229

    Article  CAS  Google Scholar 

  18. Pierce BG, Hourai Y, Weng Z (2011) Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS One 6:e24657. https://doi.org/10.1371/journal.pone.0024657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pierce B, Weng Z (2007) ZRANK: reranking protein docking predictions with an optimized energy function. Proteins 67:1078–1086. https://doi.org/10.1002/prot.21373

    Article  CAS  Google Scholar 

  20. Berman HM, Battistuz T, Bhat TN et al (2002) The protein data Bank. Acta Crystallogr D Biol Crystallogr 58:899–907

    Article  Google Scholar 

  21. Betsuyaku S, Sawa S, Yamada M (2011) The function of the CLE peptides in plant development and plant-microbe interactions. Arabidopsis Book 9:e0149. https://doi.org/10.1199/tab.0149

    Article  PubMed Central  Google Scholar 

  22. Feyfant E, Sali A, Fiser A (2007) Modeling mutations in protein structures. Protein Sci 16:2030–2041. https://doi.org/10.1110/ps.072855507

    Article  CAS  PubMed Central  Google Scholar 

  23. Gupta SK, Gupta SK, Smita S et al (2011) Computational analysis and modeling the effectiveness of “Zanamivir” targeting neuraminidase protein in pandemic H1N1 strains. Infect Genet Evol 11:1072–1082. https://doi.org/10.1016/j.meegid.2011.03.018

    Article  CAS  PubMed  Google Scholar 

  24. Chen R, Weng Z (2003) A novel shape complementarity scoring function for protein-protein docking. Proteins 51:397–408. https://doi.org/10.1002/prot.10334

    Article  CAS  PubMed  Google Scholar 

  25. Janin J (2005) Assessing predictions of protein–protein interaction: the CAPRI experiment. Protein Sci 14:278–283. https://doi.org/10.1110/ps.041081905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the German Research Foundation (DFG) for funding (TR124/B1) to TD and start-up grant (R18045) by Zayed University to MN and UAE Space Agency grant (EU1804) to FMH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Dandekar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Naseem, M. et al. (2020). Molecular Modeling of the Interaction Between Stem Cell Peptide and Immune Receptor in Plants. In: Naseem, M., Dandekar, T. (eds) Plant Stem Cells. Methods in Molecular Biology, vol 2094. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0183-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0183-9_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0182-2

  • Online ISBN: 978-1-0716-0183-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics