Skip to main content

Direct Cloning Method for Expression of Recombinant Proteins with an Inositol Hexakisphosphate Inducible Self-Cleaving Tag

  • Protocol
  • First Online:
  • 885 Accesses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2091))

Abstract

Protein purification is the most basic and critical step for protein biophysical and biochemical studies to understand its function and structure. Various fusion tags and proteases have been developed and assembled in expression and purification system. However, it is one of the fields that continues to innovate to develop improved systems that are more efficient, simpler, and less expensive. An efficient self-cleavage C-terminal fusion system was developed using the inositol hexakisphosphate-inducible Vibrio cholerae MARTXVc toxin cysteine protease domain (CPD). CPD fusion proteins are expressed from the T7 promoter and purified using a 6xHis-tag with immobilized-metal affinity chromatography. The C-terminal CPD-tag is removed by self-cleavage at the final purification stage. Here, we describe an efficient cloning method using Gibson assembly, followed by expression and purification of tagless recombinant proteins of interest using CPD self-cleavage.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Satchell KJ (2015) Multifunctional-autoprocessing repeats-in-toxin (MARTX) toxins of Vibrios. Microbiol Spectr 3:3. https://doi.org/10.1128/microbiolspec.VE-0002-2014

    Article  CAS  Google Scholar 

  2. Gavin HE, Satchell KJ (2015) MARTX toxins as effector delivery platforms. Pathog Dis 73:ftv092

    Article  Google Scholar 

  3. Lupardus PJ, Shen A, Bogyo M et al (2008) Small molecule-induced allosteric activation of the Vibrio cholerae RTX cysteine protease domain. Science 322:265–268

    Article  CAS  Google Scholar 

  4. Prochazkova K, Satchell KJ (2008) Structure-function analysis of inositol hexakisphosphate-induced autoprocessing of the Vibrio cholerae multifunctional autoprocessing RTX toxin. J Biol Chem 283:23656–23664

    Article  CAS  Google Scholar 

  5. Prochazkova K, Shuvalova LA, Minasov G et al (2009) Structural and molecular mechanism for autoprocessing of MARTX Toxin of Vibrio cholerae at multiple sites. J Biol Chem 284:26557–26568

    Article  CAS  Google Scholar 

  6. Egerer M, Satchell KJ (2010) Inositol hexakisphosphate-induced autoprocessing of large bacterial protein toxins. PLoS Pathog 6:e1000942

    Article  Google Scholar 

  7. Shen A, Lupardus PJ, Albrow VE et al (2009) Mechanistic and structural insights into the proteolytic activation of Vibrio cholerae MARTX toxin. Nat Chem Biol 5:469–478

    Article  CAS  Google Scholar 

  8. Shen A, Lupardus PJ, Morell M et al (2009) Simplified, enhanced protein purification using an inducible, autoprocessing enzyme tag. PLoS One 4:e8119

    Article  Google Scholar 

  9. Satchell KJ (2010) Cysteine protease autoprocessing of fusion proteins US Patent No. 8,257,946 B2. Date of issue: Sep. 4, 2012

    Google Scholar 

  10. Sheahan KL, Cordero CL, Satchell KJ (2007) Autoprocessing of the Vibrio cholerae RTX toxin by the cysteine protease domain. EMBO J 26:2552–2561

    Article  CAS  Google Scholar 

  11. Biancucci M, Dolores JS, Wong J et al (2017) New ligation independent cloning vectors for expression of recombinant proteins with a self-cleaving CPD/6xHis-tag. BMC Biotechnol 17:1

    Article  Google Scholar 

  12. Eschenfeldt WH, Makowska-Grzyska M, Stols L et al (2013) New LIC vectors for production of proteins from genes containing rare codons. J Struct Funct Genomics 14:135–144

    Article  CAS  Google Scholar 

  13. Lee PY, Costumbrado J, Hsu CY et al (2012) Agarose gel electrophoresis for the separation of DNA fragments. J Vis Exp 62:3923. https://doi.org/10.3791/3923

    Article  CAS  Google Scholar 

  14. Makovets S (2013) Basic DNA electrophoresis in molecular cloning: a comprehensive guide for beginners. Methods Mol Biol 1054:11–43

    Article  CAS  Google Scholar 

  15. Gibbins JM (2004) Techniques for analysis of proteins by SDS-polyacrylamide gel electrophoresis and Western blotting. Methods Mol Biol 273:139–152

    CAS  PubMed  Google Scholar 

  16. Chakavarti B, Chakavarti D (2008) Electrophoretic separation of proteins. J Vis Exp 16:758. https://doi.org/10.3791/758

    Article  Google Scholar 

  17. Gibson DG, Benders GA, Andrews-Pfannkoch C et al (2008) Complete chemical synthesis, assembly, and cloning of a Mycoplasma genitalium genome. Science 319:1215–1220

    Article  CAS  Google Scholar 

  18. Gibson DG, Benders GA, Axelrod KC et al (2008) One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome. Proc Natl Acad Sci U S A 105:20404–20409

    Article  CAS  Google Scholar 

  19. Gibson DG, Young L, Chuang RY et al (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  Google Scholar 

  20. Kwon K, Pieper R, Shallom S et al (2007) A correlation analysis of protein characteristics associated with genome-wide high throughput expression and solubility of Streptococcus pneumoniae proteins. Protein Expr Purif 55:368–378

    Article  CAS  Google Scholar 

  21. Samuelson JC (2011) Recent developments in difficult protein expression: a guide to E. coli strains, promoters, and relevant host mutations. Methods Mol Biol 705:195–209

    Article  CAS  Google Scholar 

  22. Baneyx F (1999) Recombinant protein expression in Escherichia coli. Curr Opin Biotechnol 10:411–421

    Article  CAS  Google Scholar 

  23. Lin W, Fullner KJ, Clayton R et al (1999) Identification of a Vibrio cholerae RTX toxin gene cluster that is tightly linked to the cholera toxin prophage. Proc Natl Acad Sci U S A 96:1071–1076

    Article  CAS  Google Scholar 

  24. Dolores J, Satchell KJ (2013) Analysis of Vibrio cholerae genome sequences reveals unique rtxA variants in environmental strains and an rtxA-null mutation in recent altered El Tor isolates. mBio 4:e00624

    Article  Google Scholar 

Download references

Acknowledgments

This work funded in whole or in part with Federal funds from the NIAID, NIH, DHHS, under Contracts Nos. HHSN272201200026C and HHSN272201700060C. Additional funding from the Northwestern Medicine Catalyst Fund (to K.S.), NIAID Institutional NRSA Training Grant T32AI007476 (to P.W.) and PanCan/FNCLR KRas Fellowship (to M.B).

Conflict of interest: K.J.F.S. holds patents on the use of CPD for autoprocessing of fusion proteins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karla J. F. Satchell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kwon, K., Biancucci, M., Woida, P.J., Satchell, K.J.F. (2020). Direct Cloning Method for Expression of Recombinant Proteins with an Inositol Hexakisphosphate Inducible Self-Cleaving Tag. In: Miller, G. (eds) Inositol Phosphates. Methods in Molecular Biology, vol 2091. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0167-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0167-9_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0166-2

  • Online ISBN: 978-1-0716-0167-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics