Skip to main content

Investigating the InsP3 Receptor in Living Cells by Caged InsP3

  • Protocol
  • First Online:
Inositol Phosphates

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2091))

  • 723 Accesses

Abstract

The inositol 1,4,5-trisphosphate receptor (InsP3R) operates as an intracellular ligand-gated Ca2+ channel and plays a pivotal role in cellular Ca2+ homeostasis across all living cells. It is activated following membrane receptor–ligand interactions and stimulation of subsequent signaling cascades involving the enzymatic breakdown of the membrane lipid phosphatidyl-4,5-bisphosphate (PIP2) into the membrane-delimited second messenger diacylglycerol (DAG) and the diffusible second messenger inositol-1,4,5-trisphophate (InsP3). Modulation of InsP3R’s activity is thus involved in a plethora of physiological and pathological processes. Here we combine membrane permeable photoactive caged-InsP3 with Ca2+ imaging techniques in living cells to study the channel’s in vivo properties. Using UV-flashes of variable energy, the activity properties of InsP3R can be investigated in great detail in its native environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol 1:11–21. https://doi.org/10.1038/35036035

    Article  CAS  PubMed  Google Scholar 

  2. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4:517–529. https://doi.org/10.1038/nrm1155

    Article  CAS  PubMed  Google Scholar 

  3. Bootman MD (2012) Calcium signaling. Cold Spring Harb Perspect Biol 4:a011171. https://doi.org/10.1101/cshperspect.a011171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Berridge MJ (2012) Calcium signalling remodelling and disease. Biochem Soc Trans 40:297–309. https://doi.org/10.1042/BST20110766

    Article  CAS  PubMed  Google Scholar 

  5. Foskett JK, White C, Cheung KH, Mak DOD (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87:593–658. https://doi.org/10.1152/physrev.00035.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Taylor CW, Tovey SC (2010) IP3 receptors: toward understanding their activation. Cold Spring Harb Perspect Biol 2:a004010–a004010. https://doi.org/10.1101/cshperspect.a004010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fan G, Baker ML, Wang Z et al (2015) Gating machinery of InsP3R channels revealed by electron cryomicroscopy. Nature 527:336–341. https://doi.org/10.1038/nature15249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Várnai P, Balla A, Hunyady L, Balla T (2005) Targeted expression of the inositol 1,4,5-triphosphate receptor (IP3R) ligand-binding domain releases Ca2+ via endogenous IP3R channels. Proc Natl Acad Sci U S A 102:7859–7864. https://doi.org/10.1073/pnas.0407535102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mak D, McBride S, Foskett JK (1999) Inositol 1,4,5-tris-phosphate activation of inositol tris-phosphate receptor Ca2+ channel by ligand tuning of Ca2+ inhibition (vol 95, pg 15821, 1998). Proc Natl Acad Sci U S A 96:3330–3330

    CAS  Google Scholar 

  10. Bootman MD, Lipp P (1999) Ringing changes to the ‘bell-shaped curve’. Curr Biol 9:R876–R878

    Article  CAS  Google Scholar 

  11. Taylor CW, da Fonseca PCA, Morris EP (2004) IP3 receptors: the search for structure. Trends Biochem Sci 29:210–219. https://doi.org/10.1016/j.tibs.2004.02.010

    Article  CAS  PubMed  Google Scholar 

  12. Szado T, Vanderheyden V, Parys JB et al (2008) Phosphorylation of inositol 1,4,5-trisphosphate receptors by protein kinase B/Akt inhibits Ca2+ release and apoptosis. Proc Natl Acad Sci U S A 105:2427–2432. https://doi.org/10.1073/pnas.0711324105

    Article  PubMed  PubMed Central  Google Scholar 

  13. Patterson RL, Van Rossum DB, Barrow RK, Snyder SH (2004) RACK1 binds to inositol 1, 4, 5-trisphosphate receptors and mediates Ca2+ release. Proc Natl Acad Sci U S A 101:2328

    Article  CAS  Google Scholar 

  14. Hui X, Reither G, Kaestner L, Lipp P (2014) Targeted activation of conventional and novel protein kinases C through differential translocation patterns. Mol Cell Biol 34:2370–2381. https://doi.org/10.1128/MCB.00040-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Belkacemi A, Hui X, Wardas B et al (2018) IP3 receptor-dependent cytoplasmic Ca2+ signals are tightly controlled by Cavβ3. Cell Rep 22:1339–1349. https://doi.org/10.1016/j.celrep.2018.01.010

    Article  CAS  PubMed  Google Scholar 

  16. Smrcka AV, Brown JH, Holz GG (2012) Role of phospholipase Cε in physiological phosphoinositide signaling networks. Cell Signal 24:1333–1343. https://doi.org/10.1016/j.cellsig.2012.01.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Lipp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Hui, X., Lipp, P. (2020). Investigating the InsP3 Receptor in Living Cells by Caged InsP3. In: Miller, G. (eds) Inositol Phosphates. Methods in Molecular Biology, vol 2091. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0167-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0167-9_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0166-2

  • Online ISBN: 978-1-0716-0167-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics