Skip to main content

In Silico Laboratory: Tools for Similarity-Based Drug Discovery

  • Protocol
  • First Online:
Targeting Enzymes for Pharmaceutical Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2089))

Abstract

Computational methods that predict and evaluate binding of ligands to receptors implicated in different pathologies have become crucial in modern drug design and discovery. Here, we describe protocols for using the recently developed package of computational tools for similarity-based drug discovery. The ProBiS stand-alone program and web server allow superimposition of protein structures against large protein databases and predict ligands based on detected binding site similarities. GenProBiS allows mapping of human somatic missense mutations related to cancer and non-synonymous single nucleotide polymorphisms and subsequent visual exploration of specific interactions in connection to these mutations. We describe protocols for using LiSiCA, a fast ligand-based virtual screening software that enables easy screening of large databases containing billions of small molecules. Finally, we show the use of BoBER, a web interface that enables user-friendly access to a large database of bioisosteric and scaffold hopping replacements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sliwoski G, Kothiwale S, Meiler J, Lowe EW (2014) Computational methods in drug discovery. Pharmacol Rev 66:334–395. https://doi.org/10.1124/pr.112.007336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Macalino SJY, Gosu V, Hong S, Choi S (2015) Role of computer-aided drug design in modern drug discovery. Arch Pharm Res 38:1686–1701. https://doi.org/10.1007/s12272-015-0640-5

    Article  CAS  PubMed  Google Scholar 

  3. Konc J, Janežič D (2007) An improved branch and bound algorithm for the maximum clique problem. MATCH Commun Math Comput Chem 58:569–590

    Google Scholar 

  4. Burley SK, Berman HM, Kleywegt GJ et al (2017) Protein Data Bank (PDB): the single global macromolecular structure archive. In: Wlodawer A, Dauter Z, Jaskolski M (eds) Protein crystallography: methods and protocols. Springer, New York, NY, pp 627–641

    Chapter  Google Scholar 

  5. Konc J, Hodošček M, Ogrizek M et al (2013) Structure-based function prediction of uncharacterized protein using binding sites comparison. PLoS Comput Biol 9:e1003341. https://doi.org/10.1371/journal.pcbi.1003341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Konc J, Skrlj B, Erzen N et al (2017) GenProBiS: web server for mapping of sequence variants to protein binding sites. Nucleic Acids Res 45:W253–W259. https://doi.org/10.1093/nar/gkx420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Štular T, Lešnik S, Rožman K et al (2016) Discovery of Mycobacterium tuberculosis InhA inhibitors by binding sites comparison and ligands prediction. J Med Chem 59:11069–11078. https://doi.org/10.1021/acs.jmedchem.6b01277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Konc J, Janežič D (2010) ProBiS algorithm for detection of structurally similar protein binding sites by local structural alignment. Bioinformatics 26:1160–1168. https://doi.org/10.1093/bioinformatics/btq100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Konc J, Janežič D (2014) ProBiS-ligands: a web server for prediction of ligands by examination of protein binding sites. Nucleic Acids Res 42:W215–W220. https://doi.org/10.1093/nar/gku460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Konc J, Janežič D (2010) ProBiS: a web server for detection of structurally similar protein binding sites. Nucleic Acids Res 38:W436–W440. https://doi.org/10.1093/nar/gkq479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Konc J, Janežič D (2012) ProBiS-2012: web server and web services for detection of structurally similar binding sites in proteins. Nucleic Acids Res 40:W214–W221. https://doi.org/10.1093/nar/gks435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Konc J, Janežič D (2017) ProBiS tools (algorithm, database, and web servers) for predicting and modeling of biologically interesting proteins. Prog Biophys Mol Biol 128:24–32. https://doi.org/10.1016/j.pbiomolbio.2017.02.005

    Article  CAS  PubMed  Google Scholar 

  13. Konc J, Česnik T, Konc JT et al (2012) ProBiS-database: precalculated binding site similarities and local pairwise alignments of PDB structures. J Chem Inf Model 52:604–612. https://doi.org/10.1021/ci2005687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Konc J, Depolli M, Trobec R et al (2012) Parallel-ProBiS: fast parallel algorithm for local structural comparison of protein structures and binding sites. J Comput Chem 33:2199–2203. https://doi.org/10.1002/jcc.23048

    Article  CAS  PubMed  Google Scholar 

  15. Konc J, Lešnik S, Janežič D (2015) Modeling enzyme-ligand binding in drug discovery. J Chem 7:48. https://doi.org/10.1186/s13321-015-0096-0

    Article  CAS  Google Scholar 

  16. Miller BT, Singh RP, Klauda JB et al (2008) CHARMMing: a new, flexible web portal for CHARMM. J Chem Inf Model 48:1920–1929. https://doi.org/10.1021/ci800133b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Konc J, Miller BT, Štular T et al (2015) ProBiS-CHARMMing: web interface for prediction and optimization of ligands in protein binding sites. J Chem Inf Model 55:2308–2314. https://doi.org/10.1021/acs.jcim.5b00534

    Article  CAS  PubMed  Google Scholar 

  18. Lešnik S, Štular T, Brus B et al (2015) LiSiCA: a software for ligand-based virtual screening and its application for the discovery of butyrylcholinesterase inhibitors. J Chem Inf Model 55:1521–1528. https://doi.org/10.1021/acs.jcim.5b00136

    Article  CAS  PubMed  Google Scholar 

  19. Sterling T, Irwin JJ (2015) ZINC 15—ligand discovery for everyone. J Chem Inf Model 55:2324–2337. https://doi.org/10.1021/acs.jcim.5b00559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. DeLano WL (2002) The PyMOL molecular graphics system. http://www.Pymol.Org

  21. Dilip A, Lešnik S, Štular T et al (2016) Ligand-based virtual screening interface between PyMOL and LiSiCA. J Chem 8:46. https://doi.org/10.1186/s13321-016-0157-z

    Article  CAS  Google Scholar 

  22. Lešnik S, Škrlj B, Eržen N et al (2017) BoBER: web interface to the base of bioisosterically exchangeable replacements. J Chem 9:62. https://doi.org/10.1186/s13321-017-0251-x

    Article  CAS  Google Scholar 

  23. Lešnik S, Konc J, Janežič D (2016) Scaffold hopping and bioisosteric replacements based on binding site alignments. Croat Chem Acta 89:431–437. https://doi.org/10.5562/cca2993

    Article  CAS  Google Scholar 

  24. Rožman K, Lešnik S, Brus B et al (2017) Discovery of new MurA inhibitors using induced-fit simulation and docking. Bioorg Med Chem Lett 27:944–949. https://doi.org/10.1016/j.bmcl.2016.12.082

    Article  CAS  PubMed  Google Scholar 

  25. Reigada C, Valera-Vera EA, Sayé M et al (2017) Trypanocidal effect of isotretinoin through the inhibition of polyamine and amino acid transporters in Trypanosoma cruzi. PLoS Negl Trop Dis 11:e0005472. https://doi.org/10.1371/journal.pntd.0005472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huang J, MacKerell AD (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34:2135–2145. https://doi.org/10.1002/jcc.23354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Vanommeslaeghe K, Hatcher E, Acharya C et al (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690. https://doi.org/10.1002/jcc.21367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. The UniProt Consortium (2015) UniProt: a hub for protein information. Nucleic Acids Res 43:D204–D212. https://doi.org/10.1093/nar/gku989

    Article  CAS  Google Scholar 

  29. Forbes SA, Beare D, Gunasekaran P et al (2015) COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res 43:D805–D811. https://doi.org/10.1093/nar/gku1075

    Article  CAS  PubMed  Google Scholar 

  30. Landrum MJ, Lee JM, Benson M et al (2016) ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 44:D862–D868. https://doi.org/10.1093/nar/gkv1222

    Article  CAS  PubMed  Google Scholar 

  31. Thorn CF, Klein TE, Altman RB (2013) PharmGKB: the pharmacogenomics knowledge base. In: Innocenti F, van Schaik RHN (eds) Pharmacogenomics: methods and protocols. Humana Press, Totowa, NJ, pp 311–320

    Chapter  Google Scholar 

  32. O’Boyle NM, Banck M, James CA et al (2011) Open Babel: an open chemical toolbox. J Chem 3(33). https://doi.org/10.1186/1758-2946-3-33

Download references

Acknowledgments

Financial support through Slovenian Research Agency grant L7-8269 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janez Konc .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lešnik, S., Konc, J. (2020). In Silico Laboratory: Tools for Similarity-Based Drug Discovery. In: Labrou, N. (eds) Targeting Enzymes for Pharmaceutical Development. Methods in Molecular Biology, vol 2089. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0163-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0163-1_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0162-4

  • Online ISBN: 978-1-0716-0163-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics