Skip to main content

Analyzing the Metabolism of Metastases in Mice

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2088))

Abstract

Metastasis formation is the leading cause of death in cancer patients. It has recently emerged that cancer cells adapt their metabolism to successfully transition through the metastatic cascade. Consequently, measuring and analyzing the in vivo metabolism of metastases has the potential to reveal novel treatment strategies to prevent metastasis formation. Here, we describe two different metastasis mouse models and how their metabolism can be analyzed with metabolomics and 13C tracer analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Sullivan LB, Gui DY, Vander Heiden MG (2016) Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nat Rev Cancer 16:680–693

    Article  CAS  PubMed  Google Scholar 

  2. Lorendeau D, Christen S, Rinaldi G, Fendt S-M (2015) Metabolic control of signalling pathways and metabolic auto-regulation. Biol Cell 107:251–272

    Article  CAS  PubMed  Google Scholar 

  3. Lunt SY, Fendt S-M (2018) Metabolism – a cornerstone of cancer initiation, progression, immune evasion and treatment response. Curr Opin Syst Biol 8:67–72

    Article  Google Scholar 

  4. Elia I, Doglioni G, Fendt S-M (2018) Metabolic hallmarks of metastasis formation. Trends Cell Biol 28:673–684

    Article  CAS  PubMed  Google Scholar 

  5. Doglioni G, Parik S, Fendt S-M (2019) Interactions in the (pre)metastatic niche support metastasis formation. Front Oncol 9:219

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vander Heiden MG, DeBerardinis RJ (2017) Understanding the intersections between metabolism and cancer biology. Cell 168:657–669

    Article  CAS  PubMed  Google Scholar 

  7. Rinaldi G, Rossi M, Fendt S-M (2018) Metabolic interactions in cancer: cellular metabolism at the interface between the microenvironment, the cancer cell phenotype and the epigenetic landscape. Wiley Interdiscip Rev Syst Biol Med 10:e1397

    Article  CAS  Google Scholar 

  8. Elia I, Schmieder R, Christen S, Fendt S-M (2015) Organ-specific cancer metabolism and its potential for therapy. Handb Exp Pharmacol 233:321–353

    Article  CAS  Google Scholar 

  9. Elia I, Fendt S-M (2016) In vivo cancer metabolism is defined by the nutrient microenvironment. Transl Cancer Res 5:S1284–S1287

    Article  CAS  Google Scholar 

  10. Broekaert D, Fendt SM (2019) Measuring in vivo tissue metabolism using 13C glucose infusions in mice. Methods Mol Biol 1862:67–82

    Article  CAS  PubMed  Google Scholar 

  11. Faubert B, DeBerardinis RJ (2017) Analyzing tumor metabolism in vivo. Annu Rev Cancer Biol 1:99–117

    Article  Google Scholar 

  12. Buescher JM, Antoniewicz MR, Boros LG, Burgess SC, Brunengraber H, Clish CB, DeBerardinis RJ, Feron O, Frezza C, Ghesquiere B et al (2015) A roadmap for interpreting 13 C metabolite labeling patterns from cells. Curr Opin Biotechnol 34:189–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Christen S, Lorendeau D, Schmieder R, Broekaert D, Metzger K, Veys K, Elia I, Buescher JM, Orth MF, Davidson SM et al (2016) Breast cancer-derived lung metastases show increased pyruvate carboxylase-dependent Anaplerosis. Cell Rep 17:837–848

    Article  CAS  PubMed  Google Scholar 

  14. Elia I, Broekaert D, Christen S, Boon R, Radaelli E, Orth MF, Verfaillie C, Grünewald TGP, Fendt S-M (2017) Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat Commun 8:15267

    Article  PubMed  PubMed Central  Google Scholar 

  15. Elia I, Rossi M, Stegen S, Broekaert D, Doglioni G, van Gorsel M, Boon R, Escalona-Noguero C, Torrekens S, Verfaillie C et al (2019) Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature 568:117–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lorendeau D, Rinaldi G, Boon R, Spincemaille P, Metzger K, Jäger C, Christen S, Dong X, Kuenen S, Voordeckers K et al (2017) Dual loss of succinate dehydrogenase (SDH) and complex I activity is necessary to recapitulate the metabolic phenotype of SDH mutant tumors. Metab Eng 43:187–197

    Article  CAS  PubMed  Google Scholar 

  17. Feldman AT, Wolfe D (2014) Tissue processing and Hematoxylin and eosin staining. Methods Mol Biol 1180:31–43

    Article  CAS  PubMed  Google Scholar 

  18. Hewitson TD, Wigg B, Becker GJ (2010) Tissue preparation for Histochemistry: fixation, embedding, and antigen retrieval for light microscopy. Methods Mol Biol 611:3–18

    Article  PubMed  Google Scholar 

  19. Shrivastava A, Gupta V (2011) Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles Young Sci 2:21

    Article  Google Scholar 

  20. Fernandez CA, Des RC, Previs SF, David F, Brunengraber H (1996) Correction of 13C mass Isotopomer distributions for natural stable isotope abundance. J Mass Spectrom 31:255–262

    Article  CAS  PubMed  Google Scholar 

  21. Millard P, Letisse F, Sokol S, Portais J-C (2012) IsoCor: correcting MS data in isotope labeling experiments. Bioinformatics 28:1294–1296

    Article  CAS  PubMed  Google Scholar 

  22. Pierozan P, Jernerén F, Ransome Y, Karlsson O (2017) The choice of euthanasia method affects metabolic serum biomarkers. Basic Clin Pharmacol Toxicol 121:113–118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Overmyer KA, Thonusin C, Qi NR, Burant CF, Evans CR (2015) Impact of anesthesia and euthanasia on metabolomics of mammalian tissues: studies in a C57BL/6J mouse model. PLoS One 10:e0117232

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Brooks SP, Lampi BJ, Bihun CG (1999) The influence of euthanasia methods on rat liver metabolism. Contemp Top Lab Anim Sci 38(6):19–24

    PubMed  Google Scholar 

  25. Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, Esparza LA, Reya T, Le Zhan L, Yanxiang Guo J et al (2017) Glucose feeds the TCA cycle via circulating lactate. Nature 551:115–118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Davidson SM, Papagiannakopoulos T, Olenchock BA, Heyman JE, Keibler MA, Luengo A, Bauer MR, Jha AK, O’Brien JP, Pierce KA et al (2016) Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer. Cell Metab 23:517–528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D et al (2017) Lactate metabolism in human lung tumors. Cell 171:358–371.e9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Courtney KD, Bezwada D, Mashimo T, Pichumani K, Vemireddy V, Funk AM, Wimberly J, McNeil SS, Kapur P, Lotan Y et al (2018) Isotope tracing of human clear cell renal cell carcinomas demonstrates suppressed glucose oxidation in vivo. Cell Metab 28:793–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Fan TWM, Lane AN, Higashi RM, Farag MA, Gao H, Bousamra M, Miller DM (2009) Altered regulation of metabolic pathways in human lung cancer discerned by 13Cstable isotope-resolved metabolomics (SIRM). Mol Cancer 8:1–19

    Google Scholar 

  30. Sellers K, Fox MP, Bousamra M, Slone SP, Higashi RM, Miller DM, Wang Y, Yan J, Yuneva MO, Deshpande R et al (2015) Pyruvate carboxylase is critical for non–small-cell lung cancer proliferation. J Clin Invest 125:687–698

    Article  PubMed  PubMed Central  Google Scholar 

  31. Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J, Jiang L, Ko B, Skelton R, Loudat L et al (2016) Metabolic heterogeneity in human lung tumors. Cell 164:681–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tardito S, Oudin A, Ahmed SU, Fack F, Keunen O, Zheng L, Miletic H, Sakariassen PØ, Weinstock A, Wagner A et al (2015) Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat Cell Biol 17:1556–1568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H, Yang X-L, Rajagopalan KN, Maddie M, Vemireddy V, Zhao Z et al (2012) Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human Glioblastomas in the mouse brain in vivo. Cell Metab 15:827–837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Maher EA, Marin-Valencia I, Bachoo RM, Mashimo T, Raisanen J, Hatanpaa KJ, Jindal A, Jeffrey FM, Choi C, Madden C et al (2012) Metabolism of [U-13C]glucose in human brain tumors in vivo. NMR Biomed 25:1234–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yuneva MO, Fan TWM, Allen TD, Higashi RM, Ferraris DV, Tsukamoto T, Matés JM, Alonso FJ, Wang C, Seo Y et al (2012) The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab 15:157–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Kucejova B, Duarte J, Satapati S, Fu X, Ilkayeva O, Newgard CB, Brugarolas J, Burgess SC (2016) Hepatic mTORC1 opposes impaired insulin action to control mitochondrial metabolism in obesity. Cell Rep 16:508–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Satapati S, Kucejova B, Duarte JAG, Fletcher JA, Reynolds L, Sunny NE, He T, Nair LA, Livingston KA, Livingston K et al (2015) Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J Clin Invest 125:4447–4462

    Article  PubMed  PubMed Central  Google Scholar 

  38. Satapati S, Sunny NE, Kucejova B, Fu X, He TT, Méndez-Lucas A, Shelton JM, Perales JC, Browning JD, Burgess SC (2012) Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J Lipid Res 53:1080–1092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mashimo T, Pichumani K, Vemireddy V, Hatanpaa KJ, Singh DK, Sirasanagandla S, Nannepaga S, Piccirillo SG, Kovacs Z, Foong C et al (2014) Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159:1603–1614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kim C-W, Addy C, Kusunoki J, Anderson NN, Deja S, Fu X, Burgess SC, Li C, Ruddy M, Chakravarthy M et al (2017) Acetyl CoA carboxylase inhibition reduces hepatic Steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab 26:394–406.e6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kennedy KM, Scarbrough PM, Ribeiro A, Richardson R, Yuan H, Sonveaux P, Landon CD, Chi J-T, Pizzo S, Schroeder T et al (2013) Catabolism of exogenous lactate reveals it as a legitimate metabolic substrate in breast cancer. PLoS One 8:e75154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rauckhorst AJ, Gray LR, Sheldon RD, Fu X, Pewa AD, Feddersen CR, Dupuy AJ, Gibson-Corley KN, Cox JE, Burgess SC et al (2017) The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity. Mol Metab 6:1468–1479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vatner DF, Majumdar SK, Kumashiro N, Petersen MC, Rahimi Y, Gattu AK, Bears M, Camporez J-PG, Cline GW, Jurczak MJ et al (2015) Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids. Proc Natl Acad Sci U S A 112:1143–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. DeLany JP, Windhauser MM, Champagne CM, Bray GA (2000) Differential oxidation of individual dietary fatty acids in humans. Am J Clin Nutr 72:905–911

    Article  CAS  PubMed  Google Scholar 

  45. Sidossis LS, Coggan AR, Gastaldelli A, Wolfe RR (1995) Pathway of free fatty acid oxidation in human subjects. Implications for tracer studies. J Clin Invest 95:278–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Blaak EE, Wagenmakers AJM (2002) The fate of [U-(13)C]palmitate extracted by skeletal muscle in subjects with type 2 diabetes and control subjects. Diabetes 51:784–789

    Article  CAS  PubMed  Google Scholar 

  47. Gallego S, Hermansson M, Liebisch G, Hodson L, Ejsing C, Gallego SF, Hermansson M, Liebisch G, Hodson L, Ejsing CS (2018) Total fatty acid analysis of human blood samples in one minute by high-resolution mass spectrometry. Biomol Ther 9:7

    Google Scholar 

  48. Ducker GS, Chen L, Morscher RJ, Ghergurovich JM, Esposito M, Teng X, Kang Y, Rabinowitz JD (2016) Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial Folate pathway. Cell Metab 23:1140–1153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Neinast MD, Jang C, Hui S, Murashige DS, Chu Q, Morscher RJ, Li X, Zhan L, White E, Anthony TG et al (2018) Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab 29(2):417–429

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Strong JM, Anderson LW, Monks A, Chisena CA, Cysyk RL (1983) A 13C tracer method for quantitating de novo pyrimidine biosynthesis in vitro and in vivo. Anal Biochem 132:243–253

    Article  CAS  PubMed  Google Scholar 

  51. Busch R, Kim Y-K, Neese RA, Schade-Serin V, Collins M, Awada M, Gardner JL, Beysen C, Marino ME, Misell LM et al (2006) Measurement of protein turnover rates by heavy water labeling of nonessential amino acids. Biochim Biophys Acta 1760:730–744

    Article  CAS  PubMed  Google Scholar 

  52. Pinnick KE, Gunn PJ, Hodson L (2019) Measuring human lipid metabolism using deuterium labeling: in vivo and in vitro protocols. Methods Mol Biol 1862:83–96

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah-Maria Fendt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Altea-Manzano, P., Broekaert, D., Duarte, J.A.G., Fernández-García, J., Planque, M., Fendt, SM. (2020). Analyzing the Metabolism of Metastases in Mice. In: Nagrath, D. (eds) Metabolic Flux Analysis in Eukaryotic Cells. Methods in Molecular Biology, vol 2088. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0159-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0159-4_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0158-7

  • Online ISBN: 978-1-0716-0159-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics