Analyzing the Metabolism of Metastases in Mice

  • Patricia Altea-Manzano
  • Dorien Broekaert
  • João A. G. Duarte
  • Juan Fernández-García
  • Mélanie Planque
  • Sarah-Maria FendtEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2088)


Metastasis formation is the leading cause of death in cancer patients. It has recently emerged that cancer cells adapt their metabolism to successfully transition through the metastatic cascade. Consequently, measuring and analyzing the in vivo metabolism of metastases has the potential to reveal novel treatment strategies to prevent metastasis formation. Here, we describe two different metastasis mouse models and how their metabolism can be analyzed with metabolomics and 13C tracer analysis.

Key words

Metastasis Metabolism In vivo metabolism 13C tracer analysis Metabolomics Mouse infusions 


  1. 1.
    Sullivan LB, Gui DY, Vander Heiden MG (2016) Altered metabolite levels in cancer: implications for tumour biology and cancer therapy. Nat Rev Cancer 16:680–693PubMedCrossRefGoogle Scholar
  2. 2.
    Lorendeau D, Christen S, Rinaldi G, Fendt S-M (2015) Metabolic control of signalling pathways and metabolic auto-regulation. Biol Cell 107:251–272PubMedCrossRefGoogle Scholar
  3. 3.
    Lunt SY, Fendt S-M (2018) Metabolism – a cornerstone of cancer initiation, progression, immune evasion and treatment response. Curr Opin Syst Biol 8:67–72CrossRefGoogle Scholar
  4. 4.
    Elia I, Doglioni G, Fendt S-M (2018) Metabolic hallmarks of metastasis formation. Trends Cell Biol 28:673–684PubMedCrossRefGoogle Scholar
  5. 5.
    Doglioni G, Parik S, Fendt S-M (2019) Interactions in the (pre)metastatic niche support metastasis formation. Front Oncol 9:219PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Vander Heiden MG, DeBerardinis RJ (2017) Understanding the intersections between metabolism and cancer biology. Cell 168:657–669PubMedCrossRefGoogle Scholar
  7. 7.
    Rinaldi G, Rossi M, Fendt S-M (2018) Metabolic interactions in cancer: cellular metabolism at the interface between the microenvironment, the cancer cell phenotype and the epigenetic landscape. Wiley Interdiscip Rev Syst Biol Med 10:e1397CrossRefGoogle Scholar
  8. 8.
    Elia I, Schmieder R, Christen S, Fendt S-M (2015) Organ-specific cancer metabolism and its potential for therapy. Handb Exp Pharmacol 233:321–353CrossRefGoogle Scholar
  9. 9.
    Elia I, Fendt S-M (2016) In vivo cancer metabolism is defined by the nutrient microenvironment. Transl Cancer Res 5:S1284–S1287CrossRefGoogle Scholar
  10. 10.
    Broekaert D, Fendt SM (2019) Measuring in vivo tissue metabolism using 13C glucose infusions in mice. Methods Mol Biol 1862:67–82PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Faubert B, DeBerardinis RJ (2017) Analyzing tumor metabolism in vivo. Annu Rev Cancer Biol 1:99–117CrossRefGoogle Scholar
  12. 12.
    Buescher JM, Antoniewicz MR, Boros LG, Burgess SC, Brunengraber H, Clish CB, DeBerardinis RJ, Feron O, Frezza C, Ghesquiere B et al (2015) A roadmap for interpreting 13 C metabolite labeling patterns from cells. Curr Opin Biotechnol 34:189–201PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Christen S, Lorendeau D, Schmieder R, Broekaert D, Metzger K, Veys K, Elia I, Buescher JM, Orth MF, Davidson SM et al (2016) Breast cancer-derived lung metastases show increased pyruvate carboxylase-dependent Anaplerosis. Cell Rep 17:837–848PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Elia I, Broekaert D, Christen S, Boon R, Radaelli E, Orth MF, Verfaillie C, Grünewald TGP, Fendt S-M (2017) Proline metabolism supports metastasis formation and could be inhibited to selectively target metastasizing cancer cells. Nat Commun 8:15267PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Elia I, Rossi M, Stegen S, Broekaert D, Doglioni G, van Gorsel M, Boon R, Escalona-Noguero C, Torrekens S, Verfaillie C et al (2019) Breast cancer cells rely on environmental pyruvate to shape the metastatic niche. Nature 568:117–121PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Lorendeau D, Rinaldi G, Boon R, Spincemaille P, Metzger K, Jäger C, Christen S, Dong X, Kuenen S, Voordeckers K et al (2017) Dual loss of succinate dehydrogenase (SDH) and complex I activity is necessary to recapitulate the metabolic phenotype of SDH mutant tumors. Metab Eng 43:187–197PubMedCrossRefGoogle Scholar
  17. 17.
    Feldman AT, Wolfe D (2014) Tissue processing and Hematoxylin and eosin staining. Methods Mol Biol 1180:31–43PubMedCrossRefGoogle Scholar
  18. 18.
    Hewitson TD, Wigg B, Becker GJ (2010) Tissue preparation for Histochemistry: fixation, embedding, and antigen retrieval for light microscopy. Methods Mol Biol 611:3–18PubMedCrossRefGoogle Scholar
  19. 19.
    Shrivastava A, Gupta V (2011) Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles Young Sci 2:21CrossRefGoogle Scholar
  20. 20.
    Fernandez CA, Des RC, Previs SF, David F, Brunengraber H (1996) Correction of 13C mass Isotopomer distributions for natural stable isotope abundance. J Mass Spectrom 31:255–262PubMedCrossRefGoogle Scholar
  21. 21.
    Millard P, Letisse F, Sokol S, Portais J-C (2012) IsoCor: correcting MS data in isotope labeling experiments. Bioinformatics 28:1294–1296CrossRefGoogle Scholar
  22. 22.
    Pierozan P, Jernerén F, Ransome Y, Karlsson O (2017) The choice of euthanasia method affects metabolic serum biomarkers. Basic Clin Pharmacol Toxicol 121:113–118PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Overmyer KA, Thonusin C, Qi NR, Burant CF, Evans CR (2015) Impact of anesthesia and euthanasia on metabolomics of mammalian tissues: studies in a C57BL/6J mouse model. PLoS One 10:e0117232PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Brooks SP, Lampi BJ, Bihun CG (1999) The influence of euthanasia methods on rat liver metabolism. Contemp Top Lab Anim Sci 38(6):19–24PubMedPubMedCentralGoogle Scholar
  25. 25.
    Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, Esparza LA, Reya T, Le Zhan L, Yanxiang Guo J et al (2017) Glucose feeds the TCA cycle via circulating lactate. Nature 551:115–118PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Davidson SM, Papagiannakopoulos T, Olenchock BA, Heyman JE, Keibler MA, Luengo A, Bauer MR, Jha AK, O’Brien JP, Pierce KA et al (2016) Environment impacts the metabolic dependencies of Ras-driven non-small cell lung cancer. Cell Metab 23:517–528PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D et al (2017) Lactate metabolism in human lung tumors. Cell 171:358–371.e9PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Courtney KD, Bezwada D, Mashimo T, Pichumani K, Vemireddy V, Funk AM, Wimberly J, McNeil SS, Kapur P, Lotan Y et al (2018) Isotope tracing of human clear cell renal cell carcinomas demonstrates suppressed glucose oxidation in vivo. Cell Metab 28:793–800PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Fan TWM, Lane AN, Higashi RM, Farag MA, Gao H, Bousamra M, Miller DM (2009) Altered regulation of metabolic pathways in human lung cancer discerned by 13Cstable isotope-resolved metabolomics (SIRM). Mol Cancer 8:1–19Google Scholar
  30. 30.
    Sellers K, Fox MP, Bousamra M, Slone SP, Higashi RM, Miller DM, Wang Y, Yan J, Yuneva MO, Deshpande R et al (2015) Pyruvate carboxylase is critical for non–small-cell lung cancer proliferation. J Clin Invest 125:687–698PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Hensley CT, Faubert B, Yuan Q, Lev-Cohain N, Jin E, Kim J, Jiang L, Ko B, Skelton R, Loudat L et al (2016) Metabolic heterogeneity in human lung tumors. Cell 164:681–694PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Tardito S, Oudin A, Ahmed SU, Fack F, Keunen O, Zheng L, Miletic H, Sakariassen PØ, Weinstock A, Wagner A et al (2015) Glutamine synthetase activity fuels nucleotide biosynthesis and supports growth of glutamine-restricted glioblastoma. Nat Cell Biol 17:1556–1568PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Marin-Valencia I, Yang C, Mashimo T, Cho S, Baek H, Yang X-L, Rajagopalan KN, Maddie M, Vemireddy V, Zhao Z et al (2012) Analysis of tumor metabolism reveals mitochondrial glucose oxidation in genetically diverse human Glioblastomas in the mouse brain in vivo. Cell Metab 15:827–837PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Maher EA, Marin-Valencia I, Bachoo RM, Mashimo T, Raisanen J, Hatanpaa KJ, Jindal A, Jeffrey FM, Choi C, Madden C et al (2012) Metabolism of [U-13C]glucose in human brain tumors in vivo. NMR Biomed 25:1234–1244PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Yuneva MO, Fan TWM, Allen TD, Higashi RM, Ferraris DV, Tsukamoto T, Matés JM, Alonso FJ, Wang C, Seo Y et al (2012) The metabolic profile of tumors depends on both the responsible genetic lesion and tissue type. Cell Metab 15:157–170PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Kucejova B, Duarte J, Satapati S, Fu X, Ilkayeva O, Newgard CB, Brugarolas J, Burgess SC (2016) Hepatic mTORC1 opposes impaired insulin action to control mitochondrial metabolism in obesity. Cell Rep 16:508–519PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Satapati S, Kucejova B, Duarte JAG, Fletcher JA, Reynolds L, Sunny NE, He T, Nair LA, Livingston KA, Livingston K et al (2015) Mitochondrial metabolism mediates oxidative stress and inflammation in fatty liver. J Clin Invest 125:4447–4462PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Satapati S, Sunny NE, Kucejova B, Fu X, He TT, Méndez-Lucas A, Shelton JM, Perales JC, Browning JD, Burgess SC (2012) Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J Lipid Res 53:1080–1092PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Mashimo T, Pichumani K, Vemireddy V, Hatanpaa KJ, Singh DK, Sirasanagandla S, Nannepaga S, Piccirillo SG, Kovacs Z, Foong C et al (2014) Acetate is a bioenergetic substrate for human glioblastoma and brain metastases. Cell 159:1603–1614PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kim C-W, Addy C, Kusunoki J, Anderson NN, Deja S, Fu X, Burgess SC, Li C, Ruddy M, Chakravarthy M et al (2017) Acetyl CoA carboxylase inhibition reduces hepatic Steatosis but elevates plasma triglycerides in mice and humans: a bedside to bench investigation. Cell Metab 26:394–406.e6PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Kennedy KM, Scarbrough PM, Ribeiro A, Richardson R, Yuan H, Sonveaux P, Landon CD, Chi J-T, Pizzo S, Schroeder T et al (2013) Catabolism of exogenous lactate reveals it as a legitimate metabolic substrate in breast cancer. PLoS One 8:e75154PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Rauckhorst AJ, Gray LR, Sheldon RD, Fu X, Pewa AD, Feddersen CR, Dupuy AJ, Gibson-Corley KN, Cox JE, Burgess SC et al (2017) The mitochondrial pyruvate carrier mediates high fat diet-induced increases in hepatic TCA cycle capacity. Mol Metab 6:1468–1479PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Vatner DF, Majumdar SK, Kumashiro N, Petersen MC, Rahimi Y, Gattu AK, Bears M, Camporez J-PG, Cline GW, Jurczak MJ et al (2015) Insulin-independent regulation of hepatic triglyceride synthesis by fatty acids. Proc Natl Acad Sci U S A 112:1143–1148PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    DeLany JP, Windhauser MM, Champagne CM, Bray GA (2000) Differential oxidation of individual dietary fatty acids in humans. Am J Clin Nutr 72:905–911PubMedCrossRefGoogle Scholar
  45. 45.
    Sidossis LS, Coggan AR, Gastaldelli A, Wolfe RR (1995) Pathway of free fatty acid oxidation in human subjects. Implications for tracer studies. J Clin Invest 95:278–284PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Blaak EE, Wagenmakers AJM (2002) The fate of [U-(13)C]palmitate extracted by skeletal muscle in subjects with type 2 diabetes and control subjects. Diabetes 51:784–789PubMedCrossRefGoogle Scholar
  47. 47.
    Gallego S, Hermansson M, Liebisch G, Hodson L, Ejsing C, Gallego SF, Hermansson M, Liebisch G, Hodson L, Ejsing CS (2018) Total fatty acid analysis of human blood samples in one minute by high-resolution mass spectrometry. Biomol Ther 9:7Google Scholar
  48. 48.
    Ducker GS, Chen L, Morscher RJ, Ghergurovich JM, Esposito M, Teng X, Kang Y, Rabinowitz JD (2016) Reversal of cytosolic one-carbon flux compensates for loss of the mitochondrial Folate pathway. Cell Metab 23:1140–1153PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Neinast MD, Jang C, Hui S, Murashige DS, Chu Q, Morscher RJ, Li X, Zhan L, White E, Anthony TG et al (2018) Quantitative analysis of the whole-body metabolic fate of branched-chain amino acids. Cell Metab 29(2):417–429PubMedCrossRefGoogle Scholar
  50. 50.
    Strong JM, Anderson LW, Monks A, Chisena CA, Cysyk RL (1983) A 13C tracer method for quantitating de novo pyrimidine biosynthesis in vitro and in vivo. Anal Biochem 132:243–253PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Busch R, Kim Y-K, Neese RA, Schade-Serin V, Collins M, Awada M, Gardner JL, Beysen C, Marino ME, Misell LM et al (2006) Measurement of protein turnover rates by heavy water labeling of nonessential amino acids. Biochim Biophys Acta 1760:730–744PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Pinnick KE, Gunn PJ, Hodson L (2019) Measuring human lipid metabolism using deuterium labeling: in vivo and in vitro protocols. Methods Mol Biol 1862:83–96PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Patricia Altea-Manzano
    • 1
    • 2
  • Dorien Broekaert
    • 1
    • 2
  • João A. G. Duarte
    • 1
    • 2
  • Juan Fernández-García
    • 1
    • 2
  • Mélanie Planque
    • 1
    • 2
  • Sarah-Maria Fendt
    • 1
    • 2
    Email author
  1. 1.Laboratory of Cellular Metabolism and Metabolic RegulationVIB-KU Leuven Center for Cancer Biology, VIBLeuvenBelgium
  2. 2.Laboratory of Cellular Metabolism and Metabolic Regulation, Department of OncologyKU Leuven and Leuven Cancer Institute (LKI)LeuvenBelgium

Personalised recommendations