Advertisement

Thermodynamic Approaches in Flux Analysis

  • Sabine PeresEmail author
  • Vincent Fromion
Protocol
  • 673 Downloads
Part of the Methods in Molecular Biology book series (MIMB, volume 2088)

Abstract

Networks of reactions inside the cell are constrained by the laws of mass and energy balance. Constrained-based modelling (CBM) is the most used method to describe the mass balance of metabolic network. The main key concepts in CBM are stoichiometric analysis such as elementary flux mode analysis or flux balance analysis. Some of these methods have focused on adding thermodynamics constraints to eliminate non-physical fluxes or inconsistencies in the metabolic system. Here, we review the main different approaches and how they tackle the different class of problems.

Key words

Thermodynamic in constraint-based modelling Metabolic networks Gibbs free energy Equilibrium constant of reactions 

References

  1. 1.
    Ataman M, Hatzimanikatis V (2015) Heading in the right direction: thermodynamics-based network analysis and pathway engineering. Curr Opin Biotechnol 36:176–182CrossRefGoogle Scholar
  2. 2.
    Dinh M, Fromion V (2017) RBA like problem with thermo-kinetics is non convex. arXiv:1706.01312Google Scholar
  3. 3.
    Schuster S, Hilgetag C (1994) On elementary flux modes in biochemical reaction systems at steady state. J Biol Syst 2(2):165–182CrossRefGoogle Scholar
  4. 4.
    Varma A, Palsson B (1994) Metabolic flux balancing: basic concepts, scientific and practical use. Nat Biotechnol 12:994–998CrossRefGoogle Scholar
  5. 5.
    Atkins P, de Paula J (2014) Physical chemistry, 10th edn. Freeman, New YorkGoogle Scholar
  6. 6.
    Goldberg RN, Bhat TN, Tewari YB (2004) Thermodynamics of enzyme-catalyzed reactions – a database for quantitative biochemistry. Bioinformatics 20:2874–2877CrossRefGoogle Scholar
  7. 7.
    Wang P, Neumann DB (1989) A database and retrieval system for the NBS tables of chemical thermodynamic properties. J Chem Inf Comput Sci 29(1):31–38CrossRefGoogle Scholar
  8. 8.
    Flamholz A, Noor E, Bar-Even A, Milo R (2012) eQuilibrator – the biochemical thermodynamics calculator. Nucleic Acids Res 40:D770–D775CrossRefGoogle Scholar
  9. 9.
    Jankowski M, Henry C, Broadbelt L, Hatzimanikatis V (2008) Group contribution method for thermodynamic analysis of complex metabolic networks. Biophys J 95(3):1487–1499CrossRefGoogle Scholar
  10. 10.
    Mavrovouniotis M (1990) Group contributions for estimating standard Gibbs energies of formation of biochemical compounds in aqueous solution. Biotechnol Bioeng 36(10):1070–1082CrossRefGoogle Scholar
  11. 11.
    Beard D, Liang S, Qian H (2002) Energy balance for analysis of complex metabolic networks. Biophys J 83:79–86CrossRefGoogle Scholar
  12. 12.
    Henry C, Broadbelt L, Hatzimanikatis V (2007) Thermodynamics-based metabolic flux analysis. Biophys J 92:1792–1805CrossRefGoogle Scholar
  13. 13.
    Müller S, Regensburger G, Steuer R (2014) Enzyme allocation problems in kinetic metabolic networks: Optimal solutions are elementary flux modes. J Theor Biol 347:182–190CrossRefGoogle Scholar
  14. 14.
    Wortel MT, Peters H, Hulshof J, Teusink B, Bruggeman FJ (2014) Metabolic states with maximal specific rate carry flux through an elementary flux mode. FEBS J 281:1547–1555CrossRefGoogle Scholar
  15. 15.
    Gerstl M, Jungreuthmayer C, Zanghellini J (2015) TEFMA: computing thermodynamically feasible elementary flux modes in metabolic networks. Bioinformatics 31:2232–2234CrossRefGoogle Scholar
  16. 16.
    Peres S, Jolicoeur M, Moulin C, Dague P, Schuster S (2017) How important is thermodynamics for identifying elementary flux modes? PLoS One 12(2):e0171440CrossRefGoogle Scholar
  17. 17.
    Wortel M, Noor E, Ferris M, Bruggeman F, Liebermeister W (2018) Metabolic enzyme cost explains variable trade-offs between microbial growth rate and yield. PLOS Comput Biol 14:1–21CrossRefGoogle Scholar
  18. 18.
    Gerstl M, Ruckerbauer D, Mattanovich D, Jungreuthmayer C, Zanghellini J (2015) Metabolomics integrated elementary flux mode analysis in large metabolic networks. Sci Rep 5:8930CrossRefGoogle Scholar
  19. 19.
    Gerstl M, Jungreuthmayer C, Muller S, Zanghellini J (2016) Which sets of elementary flux modes form thermodynamically feasible flux distributions? FEBS J 283:782–1794CrossRefGoogle Scholar
  20. 20.
    Terzer, M Stelling J (2008) Large-scale computation of elementary flux modes with bit pattern trees. Bioinformatics 24(19):2229–2235CrossRefGoogle Scholar
  21. 21.
    Schuster S, Heinrich R (1991) Minimization of intermediate concentrations as a suggested optimality principle for biochemical networks. J Math Biol 29:425–442CrossRefGoogle Scholar
  22. 22.
    Beard D, Babson E, Curtis E, Qian H (2004) Thermodynamic constraints for biochemical networks. J Theor Biol 228(3):327–333CrossRefGoogle Scholar
  23. 23.
    Kümmel A, Panke S, Heinemann M (2006) Systematic assignment of thermodynamic constraints in metabolic network models. BMC Bioinf 7:512CrossRefGoogle Scholar
  24. 24.
    Zamboni N, Kümmel A, Heinemann M (2008) anNET: a tool for network-embedded thermodynamic analysis of quantitative metabolome data. BMC Bioinf 9:199Google Scholar
  25. 25.
    Jol SJ, Kümmel A, Terzer M, Stelling J, Heinemann M (2012) System-level insights into yeast metabolism by thermodynamic analysis of elementary flux modes. PLoS Comput Biol 8(3):e1002415CrossRefGoogle Scholar
  26. 26.
    Vielma J (2015) Mixed integer linear programming formulation techniques. SIAM Rev 57(1):3–57CrossRefGoogle Scholar
  27. 27.
    Salvy P, Fengos G, Ataman M, Pathier T, Soh K, Hatzimanikatis V (2018) pyTFA and matTFA: a Python package and a Matlab toolbox for thermodynamics-based flux analysis. Bioinformatics 35:167–169PubMedCentralGoogle Scholar
  28. 28.
    Motzkin T, Raiffa H, Thompson GL, Thrall RM (1953) The double description method. In: Kuhn HW, Tucker AW (eds) Contributions to the theory of games II. Princeton University Press, PrincetonGoogle Scholar
  29. 29.
    Muller A, Bockmayr A (2014) Flux modules in metabolic networks. J Math Biol 69:1151–1179CrossRefGoogle Scholar
  30. 30.
    Gerstl M, Zanghellini J, Müller S, Regensburger G (2018) Flux tope analysis: studying the coordination of reaction directions in metabolic networks. Bioinformatics 35:266–273CrossRefGoogle Scholar
  31. 31.
    Peres S, Schuster S, Dague P (2018) Thermodynamic constraints for identifying the elementary flux modes. Biochem Soc Trans 46(3):641–647.  https://doi.org/10.1042/BST20170260CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  1. 1.LRI, Université Paris-Sud, CNRSUniversité Paris-SaclayOrsayFrance
  2. 2.INRA, UR1404, MaIAGEUniversité Paris-SaclayJouy-en-JosasFrance

Personalised recommendations