Skip to main content

Single-cell Digital Twins for Cancer Preclinical Investigation

  • Protocol
  • First Online:
Metabolic Flux Analysis in Eukaryotic Cells

Abstract

Laboratory models derived from clinical samples represent a solid platform in preclinical research for drug testing and investigation of disease mechanisms. The integration of these laboratory models with their digital counterparts (i.e., predictive mathematical models) allows to set up digital twins essential to fully exploit their potential to face the enormous molecular complexity of human organisms. In particular, due to the close integration of cell metabolism with all other cellular processes, any perturbation in cellular physiology typically reflect on altered cells metabolic profiling. In this regard, changes in metabolism have been shown, also in our laboratory, to drive a causal role in the emergence of cancer disease. Nevertheless, a unique metabolic program does not describe the altered metabolic profile of all tumour cells due to many causes from genetic variability to intratumour heterogeneous dependency on nutrients consumption and metabolism by multiple co-existing subclones. Currently, fluxomics approaches just match with the necessity of characterizing the overall flux distribution of cells within given samples, by disregarding possible heterogeneous behaviors. For the purpose of stratifying cancer heterogeneous subpopulations, quantification of fluxes at the single-cell level is needed. To this aim, we here present a new computational framework called single-cell Flux Balance Analysis (scFBA) that aims to set up digital metabolic twins in the perspective of being better exploited within a framework that makes also use of laboratory patient cell models. In particular, scFBA aims at integrating single-cell RNA-seq data within computational population models in order to depict a snapshot of the corresponding single-cell metabolic phenotypes at a given moment, together with an unsupervised identification of metabolic subpopulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. John R Masters (2002) Hela cells 50 years on: the good, the bad and the ugly. Nat Rev Cancer 2(4):315

    Article  CAS  Google Scholar 

  2. Byrne AT, Alférez DG, Amant F, Annibali D, Arribas J, Biankin AV, Bruna A, Budinská E, Caldas C, Chang DK, et al (2017) Interrogating open issues in cancer precision medicine with patient-derived xenografts. Nat Rev Cancer 17(4):254

    Article  CAS  Google Scholar 

  3. Sontheimer-Phelps A, Hassell BA, Ingber DE (2019) Modelling cancer in microfluidic human organs-on-chips. Nat Rev Cancer 19:65–81

    Article  CAS  Google Scholar 

  4. Damiani C, Colombo R, Gaglio D, Mastroianni F, Pescini D, Westerhoff HV, Mauri G, Vanoni M, Alberghina L (2017) A metabolic core model elucidates how enhanced utilization of glucose and glutamine, with enhanced glutamine-dependent lactate production, promotes cancer cell growth: the warburq effect. PLoS Comput Biol 13(9):e1005758

    Article  Google Scholar 

  5. Gaglio D, Metallo CM, Gameiro PA, Hiller K, Danna LS, Balestrieri C, Alberghina L, Stephanopoulos G, Chiaradonna F (2011) Oncogenic k-ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol Syst Biol 7(1):523

    Article  Google Scholar 

  6. Icard P, Fournel L, Wu Z, Alifano M, Lincet H (2019) Interconnection between metabolism and cell cycle in cancer. Trends Biochem Sci 44:490–501

    Article  CAS  Google Scholar 

  7. Reid MA, Dai Z, Locasale JW (2017) The impact of cellular metabolism on chromatin dynamics and epigenetics. Nat Cell Biol 19(11):1298

    Article  CAS  Google Scholar 

  8. Nielsen J (2017) Systems biology of metabolism: a driver for developing personalized and precision medicine. Cell Metab 25(3):572–579

    Article  CAS  Google Scholar 

  9. Brunk E, Sahoo S, Zielinski DC, Altunkaya A, Dräger A, Mih N, Gatto F, Nilsson A, Gonzalez GAP, Aurich MK, et al (2018) Recon3d enables a three-dimensional view of gene variation in human metabolism. Nat Biotechnol 36(3):272

    Article  CAS  Google Scholar 

  10. Graudenzi A, Maspero D, Di Filippo M, Gnugnoli M, Isella C, Mauri G, Medico E, Antoniotti M, Damani C (2018) Integration of transcriptomic data and metabolic networks in cancer samples reveals highly significant prognostic power. J Biomed Inform 87:37–149

    Article  Google Scholar 

  11. The cancer genome atlas (tcga). https://www.cancer.gov/tcga

  12. Marjanovic ND, Weinberg RA, Chaffer CL (2013) Cell plasticity and heterogeneity in cancer. Clin Chem 59(1):168–179

    Article  CAS  Google Scholar 

  13. Allison KH, Sledge GW (2014) Heterogeneity and cancer. Oncology 28(9):772–778

    PubMed  Google Scholar 

  14. Di Filippo M, Colombo R, Damiani C, Pescini D, Gaglio D, Vanoni M, Alberghina L, Mauri G (2016) Zooming-in on cancer metabolic rewiring with tissue specific constraint-based models. Comput Biol Chem 62:60–69

    Article  Google Scholar 

  15. Burrell RA, McGranahan N, Bartek J, Swanton C (2013) The causes and consequences of genetic heterogeneity in cancer evolution. Nature 501(7467):338

    Article  CAS  Google Scholar 

  16. Jamal-Hanjani M, Quezada SA, Larkin J, Swanton C (2015) Translational implications of tumor heterogeneity. Clin Cancer Res 21(6):1258–1266

    Article  CAS  Google Scholar 

  17. Damiani C, Maspero D, Di Filippo M, Colombo R, Pescini D, Graudenzi A, Westerhoff HV, Alberghina L, Vanoni M, Mauri G (2019) Integration of single-cell rna-seq data into population models to characterize cancer metabolism. PLoS Comput Biol 15(2):e1006733

    Article  CAS  Google Scholar 

  18. Damiani C, Di Filippo M, Pescini D, Maspero D, Colombo R, Mauri G (2017) popfba: tackling intratumour heterogeneity with flux balance analysis. Bioinformatics 33(14):i311–i318

    Article  CAS  Google Scholar 

  19. Di Filippo M, Damiani C, Colombo R, Pescini D, Mauri G (2016) Constraint-based modeling and simulation of cell populations. In: Italian workshop on artificial life and evolutionary computation. Springer, Berlin, pp 126–137

    Google Scholar 

  20. Mahadevan R, Schilling CH (2003) The effects of alternate optimal solutions in constraint-based genome-scale metabolic models. Metab Eng 5(4):264–276

    Article  CAS  Google Scholar 

  21. Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28(3):245

    Article  CAS  Google Scholar 

  22. Fiaschi T, Marini A, Giannoni E, Taddei ML, Gandellini P, De Donatis A, Lanciotti M, Serni S, Cirri P, Chiarugi P (2012) Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res 72:5130–5140

    Article  CAS  Google Scholar 

  23. Sanità P, Capulli M, Teti A, Galatioto GP, Vicentini C, Chiarugi P, Bologna M, Angelucci A (2014) Tumor-stroma metabolic relationship based on lactate shuttle can sustain prostate cancer progression. BMC Cancer 14(1):154

    Article  Google Scholar 

  24. Martinez-Outschoorn UE, Lin Z, Trimmer C, Flomenberg N, Wang C, Pavlides S, Pestell RG, Howell A, Sotgia F, Lisanti MP (2011) Cancer cells metabolically “fertilize” the tumor microenvironment with hydrogen peroxide, driving the warburg effect: implications for pet imaging of human tumors. Cell Cycle 10(15):2504–2520

    Article  CAS  Google Scholar 

  25. Kanehisa M, Goto S (2000) Kegg: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30

    Article  CAS  Google Scholar 

  26. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44(D1):D457–62

    Article  CAS  Google Scholar 

  27. UniProt Consortium et al (2018) Uniprot: the universal protein knowledgebase. Nucleic Acids Res 46(5):2699

    Article  Google Scholar 

  28. Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono B, Jassal B, Gopinath GR, Wu GR, Matthews L, et al (2005) Reactome: a knowledgebase of biological pathways. Nucleic Acids Res 33(suppl 1):D428–D432

    CAS  PubMed  Google Scholar 

  29. Orth JD, Jeffrey D and Fleming, Ronan MT and Palsson, Bernhard O (2010) Reconstruction and use of microbial metabolic networks: the core Escherichia coli metabolic model as an educational guide. EcoSal plus 4(1). American Society for Microbiology https://www.asmscience.org/content/journal/ecosalplus/10.1128/ecosalplus.10.2.1. https://doi.org/10.1128/ecosalplus.10.2.1

  30. Thiele I, Palsson B (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5(1):93

    Article  CAS  Google Scholar 

  31. Swainston N, Smallbone K, Hefzi H, Dobson PD, Brewer J, Hanscho M, Zielinski DC, Ang KS, Gardiner NJ, Gutierrez JM et al (2016) Recon 2.2: from reconstruction to model of human metabolism. Metabolomics 12(7):109

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lilia Alberghina or Dario Pescini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Filippo, M.D. et al. (2020). Single-cell Digital Twins for Cancer Preclinical Investigation. In: Nagrath, D. (eds) Metabolic Flux Analysis in Eukaryotic Cells. Methods in Molecular Biology, vol 2088. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0159-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0159-4_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0158-7

  • Online ISBN: 978-1-0716-0159-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics