Metabolic Flux Analysis in Eukaryotic Cells pp 315-330 | Cite as
Metabolic Network Reconstructions to Predict Drug Targets and Off-Target Effects
Protocol
First Online:
- 1 Mentions
- 703 Downloads
Abstract
The drug development pipeline has stalled because of the difficulty in identifying new drug targets while minimizing off-target effects. Computational methods, such as the use of metabolic network reconstructions, may provide a cost-effective platform to test new hypotheses for drug targets and prevent off-target effects. Here, we summarize available methods to identify drug targets and off-target effects using either reaction-centric, gene-centric, or metabolite-centric approaches with genome-scale metabolic network reconstructions.
Key words
Genome-scale metabolic network reconstruction (GENRE) Drug targets Off-target effects Constraint-based modeling Flux balance analysis (FBA)References
- 1.Mougin F, Auber D, Bourqui R et al (2018) Visualizing omics and clinical data: Which challenges for dealing with their variety? Methods 132:3–18PubMedCrossRefGoogle Scholar
- 2.Schuster D, Laggner C, Langer T (2005) Why drugs fail—a study on side effects in new chemical entities. Curr Pharm Des 11:3545–3559PubMedCrossRefGoogle Scholar
- 3.Edwards IR, Aronson JK (2000) Adverse drug reactions: definitions, diagnosis, and management. Lancet 356:1255–1259PubMedCrossRefGoogle Scholar
- 4.Sawada R, Iwata M, Tabei Y et al (2018) Predicting inhibitory and activatory drug targets by chemically and genetically perturbed transcriptome signatures. Sci Rep 8:156PubMedPubMedCentralCrossRefGoogle Scholar
- 5.Suthers PF, Zomorrodi A, Maranas CD (2009) Genome-scale gene/reaction essentiality and synthetic lethality analysis. Mol Syst Biol 5:301PubMedPubMedCentralCrossRefGoogle Scholar
- 6.Pey J, San José-Eneriz E, Ochoa MC et al (2017) In-silico gene essentiality analysis of polyamine biosynthesis reveals APRT as a potential target in cancer. Sci Rep 7:14358PubMedPubMedCentralCrossRefGoogle Scholar
- 7.Bordbar A, Lewis NE, Schellenberger J et al (2010) Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol Syst Biol 6:422PubMedPubMedCentralCrossRefGoogle Scholar
- 8.Orth JD, Palsson BØ, Fleming RMT (2010) Reconstruction and use of microbial metabolic networks: the core Escherichia coli metabolic model as an educational guide. EcoSal Plus 4:PMID: 26443778CrossRefGoogle Scholar
- 9.Oberhardt MA, Puchalka J, Fryer KE et al (2008) Genome-scale metabolic network analysis of the opportunistic pathogen Pseudomonas aeruginosa PAO1. J Bacteriol 190:2790–2803PubMedPubMedCentralCrossRefGoogle Scholar
- 10.Förster J, Famili I, Fu P et al (2003) Genome-scale reconstruction of the Saccharomyces cerevisiae metabolic network. Genome Res 13:244–253PubMedPubMedCentralCrossRefGoogle Scholar
- 11.Thiele I, Swainston N, Fleming RMT et al (2013) A community-driven global reconstruction of human metabolism. Nat Biotechnol 31:419–425PubMedCrossRefGoogle Scholar
- 12.Mardinoglu A, Agren R, Kampf C et al (2014) Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat Commun 5:3083PubMedCrossRefGoogle Scholar
- 13.Blais EM, Rawls KD, Dougherty BV et al (2017) Reconciled rat and human metabolic networks for comparative toxicogenomics and biomarker predictions. Nat Commun 8:14250PubMedPubMedCentralCrossRefGoogle Scholar
- 14.Yizhak K, Chaneton B, Gottlieb E et al (2015) Modeling cancer metabolism on a genome scale. Mol Syst Biol 11:817PubMedPubMedCentralCrossRefGoogle Scholar
- 15.Ghaffari P, Mardinoglu A, Asplund A et al (2015) Identifying anti-growth factors for human cancer cell lines through genome-scale metabolic modeling. Sci Rep 5:8183PubMedPubMedCentralCrossRefGoogle Scholar
- 16.Chang RL, Xie L, Xie L et al (2010) Drug off-target effects predicted using structural analysis in the context of a metabolic network model. PLoS Comput Biol 6:e1000938PubMedPubMedCentralCrossRefGoogle Scholar
- 17.Zielinski DC, Filipp FV, Bordbar A et al (2015) Pharmacogenomic and clinical data link non-pharmacokinetic metabolic dysregulation to drug side effect pathogenesis. Nat Commun 6:7101PubMedPubMedCentralCrossRefGoogle Scholar
- 18.Shaked I, Oberhardt MA, Atias N et al (2016) Metabolic network prediction of drug side effects. Cell Syst 2:209–213PubMedCrossRefGoogle Scholar
- 19.Heirendt L, Arreckx S, Pfau T et al (2019) Creation and analysis of biochemical constraint-based models using the COBRA Toolbox v.3.0. Nat Protoc 14:639–702PubMedCrossRefGoogle Scholar
- 20.Folger O, Jerby L, Frezza C et al (2011) Predicting selective drug targets in cancer through metabolic networks. Mol Syst Biol 7:501PubMedPubMedCentralCrossRefGoogle Scholar
- 21.Rawls KD, Dougherty BV, Blais EM et al (2019) A simplified metabolic network reconstruction to promote understanding and development of flux balance analysis tools. Comput Biol Med 105:64–71PubMedCrossRefGoogle Scholar
- 22.Ma H, Sorokin A, Mazein A et al (2007) The Edinburgh human metabolic network reconstruction and its functional analysis. Mol Syst Biol 3:135PubMedPubMedCentralCrossRefGoogle Scholar
- 23.Swainston N, Smallbone K, Hefzi H et al (2016) Recon 2.2: from reconstruction to model of human metabolism. Metabolomics 12:109PubMedPubMedCentralCrossRefGoogle Scholar
- 24.Brunk E, Sahoo S, Zielinski DC et al (2018) Recon3D enables a three-dimensional view of gene variation in human metabolism. Nat Biotechnol 36:272–281PubMedPubMedCentralCrossRefGoogle Scholar
- 25.Robaina Estévez S, Nikoloski Z (2014) Generalized framework for context-specific metabolic model extraction methods. Front Plant Sci 5:491PubMedPubMedCentralGoogle Scholar
- 26.Blazier AS, Papin JA (2012) Integration of expression data in genome-scale metabolic network reconstructions. Front Physiol 3:299PubMedPubMedCentralCrossRefGoogle Scholar
- 27.Uhlen M, Hallstro m BM, Lindskog C et al (2016) Transcriptomics resources of human tissues and organs. Mol Syst Biol 12:862–862PubMedPubMedCentralCrossRefGoogle Scholar
- 28.Schultz A, Qutub AA (2016) Reconstruction of tissue-specific metabolic networks using CORDA. PLoS Comput Biol 12:e1004808PubMedPubMedCentralCrossRefGoogle Scholar
- 29.Agren R, Bordel S, Mardinoglu A et al (2012) Reconstruction of genome-scale active metabolic networks for 69 human cell types and 16 cancer types using INIT. PLoS Comput Biol 8:e1002518PubMedPubMedCentralCrossRefGoogle Scholar
- 30.Zhang A-D, Dai S-X, Huang J-F Reconstruction and analysis of human kidney-specific metabolic network based on omics data. https://www.hindawi.com/journals/bmri/2013/187509/
- 31.Sohrabi-Jahromi S, Marashi S-A, Kalantari S (2016) A kidney-specific genome-scale metabolic network model for analyzing focal segmental glomerulosclerosis. Mamm Genome 27:158–167PubMedCrossRefGoogle Scholar
- 32.Karlstädt A, Fliegner D, Kararigas G et al (2012) CardioNet: a human metabolic network suited for the study of cardiomyocyte metabolism. BMC Syst Biol 6:114PubMedPubMedCentralCrossRefGoogle Scholar
- 33.Zhao Y, Huang J (2011) Reconstruction and analysis of human heart-specific metabolic network based on transcriptome and proteome data. Biochem Biophys Res Commun 415:450–454PubMedCrossRefGoogle Scholar
- 34.Bordbar A, Mo ML, Nakayasu ES et al (2012) Model-driven multi-omic data analysis elucidates metabolic immunomodulators of macrophage activation. Mol Syst Biol 8:558PubMedPubMedCentralCrossRefGoogle Scholar
- 35.Agren R, Mardinoglu A, Asplund A et al (2014) Identification of anticancer drugs for hepatocellular carcinoma through personalized genome-scale metabolic modeling. Mol Syst Biol 10:721PubMedPubMedCentralCrossRefGoogle Scholar
- 36.Thiele I, Palsson BØ (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5:93–121PubMedPubMedCentralCrossRefGoogle Scholar
- 37.Yizhak K, Gabay O, Cohen H et al (2013) Model-based identification of drug targets that revert disrupted metabolism and its application to ageing. Nat Commun 4:2632PubMedCrossRefGoogle Scholar
- 38.Nogiec C, Burkart A, Dreyfuss JM et al (2015) Metabolic modeling of muscle metabolism identifies key reactions linked to insulin resistance phenotypes. Mol Metab 4:151–163PubMedPubMedCentralCrossRefGoogle Scholar
- 39.Yizhak K, Le Devedec SE, Rogkoti VM et al (2014) A computational study of the Warburg effect identifies metabolic targets inhibiting cancer migration. Mol Syst Biol 10:744–744PubMedPubMedCentralCrossRefGoogle Scholar
- 40.Stempler S, Yizhak K, Ruppin E (2014) Integrating transcriptomics with metabolic modeling predicts biomarkers and drug targets for Alzheimer’s disease. PLoS One 9:e105383PubMedPubMedCentralCrossRefGoogle Scholar
- 41.Wishart DS, Feunang YD, Guo AC, et al (2018) DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res 46:D1074–D1082PubMedCentralCrossRefPubMedGoogle Scholar
- 42.Kuhn M, Campillos M, Letunic I et al (2010) A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol 6:343PubMedPubMedCentralCrossRefGoogle Scholar
- 43.Kuhn M, Letunic I, Jensen LJ et al (2016) The SIDER database of drugs and side effects. Nucleic Acids Res 44:D1075–D1079PubMedCrossRefGoogle Scholar
- 44.Rienksma RA, Suarez-Diez M, Spina L et al (2014) Systems-level modeling of mycobacterial metabolism for the identification of new (multi-)drug targets. Semin Immunol 26:610–622PubMedCrossRefGoogle Scholar
- 45.Guarente L (1993) Synthetic enhancement in gene interaction: a genetic tool come of age. Trends Genet 9:362–366PubMedCrossRefGoogle Scholar
- 46.Jerby L, Shlomi T, Ruppin E (2010) Computational reconstruction of tissue-specific metabolic models: application to human liver metabolism. Mol Syst Biol 6:401PubMedPubMedCentralCrossRefGoogle Scholar
- 47.Raškevičius V, Mikalayeva V, Antanavičiūtė I et al (2018) Genome scale metabolic models as tools for drug design and personalized medicine. PLoS One 13:e0190636PubMedPubMedCentralCrossRefGoogle Scholar
- 48.Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer 3:330–338PubMedCrossRefGoogle Scholar
- 49.Mehrmohamadi M, Jeong SH, Locasale JW (2017) Molecular features that predict the response to antimetabolite chemotherapies. Cancer Metab 5:8PubMedPubMedCentralCrossRefGoogle Scholar
Copyright information
© Springer Science+Business Media, LLC, part of Springer Nature 2020