Skip to main content

VEGAHUB for Ecotoxicological QSAR Modeling

  • Protocol
  • First Online:
Ecotoxicological QSARs

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

VEGAHUB is a freely available platform, which offers tens of QSAR models for many endpoints of environmental and ecotoxicological interest. In the last years, other tools have been added, for read across and prioritization. These tools can be used in an integrated way.

An interesting feature of VEGAHUB is the possibility to evaluate the reliability of the assessment, in particular for the QSAR models and for the software for prioritization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Virtual models for property evaluation of chemicals within a global architecture (VEGA). www.vegahub.eu

  2. Benfenati E (ed) (2007) Quantitative Structure-Activity Relationships (QSAR) for pesticide regulatory purposes. Elsevier, Amsterdam

    Google Scholar 

  3. CAESAR project. http://www.caesar-project.eu/

  4. Cassano A, Manganaro A, Martin TM et al (2010) The CAESAR models for developmental toxicity. Chem Cent J 4(Suppl 1):S4

    Article  Google Scholar 

  5. Fjodorova N, Vrachko M, Novich M et al (2010) New public QSAR model for carcinogenicity. Chem Cent J 4(Suppl 1):S3

    Article  Google Scholar 

  6. Lombardo A, Roncaglioni A, Boriani E et al (2010) Assessment and validation of the CAESAR predictive model for bioconcentration factor (BCF) in fish. Chem Cent J 4(Suppl 1):S1

    Article  Google Scholar 

  7. Benfenati E (2010) The CAESAR project for in silico models for the REACH legislation. Chem Cent J 4(Suppl 1):I1

    Article  Google Scholar 

  8. Chaudhry Q, Piclin N, Cotterill J et al (2010) Global QSAR models of skin sensitisers for regulatory purposes. Chem Cent J 4(Suppl 1):S5

    Article  Google Scholar 

  9. Ferrari T, Gini G (2010) An open source multistep model to predict mutagenicity from statistical analysis and relevant structural alerts. Chem Cent J 4(Suppl 1):S2

    Article  Google Scholar 

  10. Toxicity Estimation Software Tool (TEST). https://www.epa.gov/chemical-research/forms/contact-us-about-toxicity-estimation-software-tool-test

  11. EPI Suite – Estimation Program Interface. https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface

  12. Toxtree. http://toxtree.sourceforge.net/

  13. Alternative Non-Testing methods Assessed for REACH Substances (ANTARES), LIFE08 ENV/IT/000435. http://www.antares-life.eu/

  14. Chemical Assessment according to Legislation Enhancing the In silico Documentation and Safe use (CALEIDOS), LIFE11 ENV/IT/000295. http://www.life-caleidos.eu/

  15. Promoting the use of in silico methods in industry (LIFE PROSIL), LIFE12 ENV/IT/000154. http://www.life-prosil.eu/

  16. Integrating VEGA. ToxRead, MERLIN-Expo and ERICA in a platform for risk assessment and substitution for risky substances (LIFE-VERMEER), LIFE16ENV/IT7000167. https://www.life-vermeer.eu/

  17. Concerting experimental data and in silico models for REACH (LIFE CONCERT REACH). LIFE17 GIE/IT/000461. http://ec.europa.eu/environment/life/project/Projects/index.cfm?fuseaction=search.dspPage&n_proj_id=6791

  18. Gini G, Franchi AM, Manganaro A et al (2014) ToxRead: a tool to assist in read across and its use to assess mutagenicity of chemicals. SAR QSAR Environ Res 25:999–1011

    Article  CAS  Google Scholar 

  19. Hardy A, Benford D, Halldorsson T et al (2017) Guidance on the use of the weight of evidence approach in scientific assessments. EFSA J 15:4971. https://doi.org/10.2903/j.efsa.2017.4971

    Article  Google Scholar 

  20. Floris M, Manganaro A, Nicolotti O et al (2014) A generalizable definition of chemical similarity for read-across. J Chem 6:39

    Article  Google Scholar 

  21. Benfenati E, Belli M, Borges T et al (2016) Results of a round-robin exercise on read-across. SAR QSAR Environ Res 27:371–384

    Article  CAS  Google Scholar 

  22. PROMETHEUS. https://www.vegahub.eu/portfolio-item/prometheus/

  23. Pizzo F, Lombardo A, Manganaro A et al (2016) Integrated in silico strategy for PBT assessment and prioritization under REACH. Environ Res 151:478–492

    Article  CAS  Google Scholar 

  24. SARpy. http://sarpy.sourceforge.net/

  25. Lombardo A, Pizzo F, Benfenati E et al (2014) A new in silico classification model for ready biodegradability, based on molecular fragments. Chemosphere 108:10–16

    Article  CAS  Google Scholar 

  26. Pizzo F, Lombardo A, Brandt M et al (2016) A new integrated in silico strategy for the assessment and prioritization of persistence of chemicals under REACH. Environ Int 88:50–260

    Article  Google Scholar 

  27. Ferrari T, Lombardo A, Benfenati E (2018) QSARpy: a new flexible algorithm to generate QSAR models based on dissimilarities. The log Kow case study. Sci Total Environ 637–638:1158–1165

    Article  Google Scholar 

  28. CORAL. http://www.insilico.eu/coral/SOFTWARECORAL.html

  29. Toropov AA, Toropova AP, Marzo M et al (2017) QSAR models for predicting acute toxicity of pesticides in rainbow trout using the CORAL software and EFSA’s OpenFoodTox database. Environ Toxicol Pharmacol 53:158–163

    Article  CAS  Google Scholar 

  30. Toropov AA, Toropova AP, Cappelli CI, Benfenati E (2015) CORAL: model for octanol/water partition coefficient. Fluid Phase Equilib 397:44–49

    Article  CAS  Google Scholar 

  31. Toropova AP, Toropov AA, Martyanov SE et al (2013) CORAL: Monte Carlo method as a tool for the prediction of the bioconcentration factor of industrial pollutants. Mol Inform 32:145–154

    Article  CAS  Google Scholar 

  32. Toropov AA, Toropova AP, Benfenati E et al (2013) CORAL: QSPR model of water solubility based on local and global SMILES attributes. Chemosphere 90:877–880

    Article  CAS  Google Scholar 

  33. Toropova AP, Toropov AA, Benfenati E et al (2012) The minimum number of “eccentric” substances: quantitative criterion to estimate the reliability of a QSPR. A case of water solubility. Chem Phys Lett 542:134–137

    Article  CAS  Google Scholar 

  34. Toropov AA, Toropova AP, Lombardo A et al (2012) CORAL: the prediction of biodegradation of organic compounds with optimal SMILES-based descriptors. Cent Eur J Chem 10:1042–1048

    CAS  Google Scholar 

  35. Toropova AP, Toropov AA, Lombardo A et al (2012) CORAL: QSAR models for acute toxicity in fathead minnow (Pimephales promelas). J Comput Chem 33:1218–1223

    CAS  PubMed  Google Scholar 

  36. Toropova AP, Toropov AA, Benfenati E, Gini G (2012) QSAR models for toxicity of organic substances to Daphnia magna built up by using the CORAL freeware. Chem Biol Drug Des 79:332–338

    Article  CAS  Google Scholar 

  37. Toropov AA, Toropova AP, Gonella Diaza R et al (2012) SMILES-based optimal descriptors: QSAR modeling of estrogen receptor binding affinity by correlation balance. Struct Chem 23:529–544

    Article  CAS  Google Scholar 

  38. Toropova AP, Toropov AA, Martyanov SE et al (2012) CORAL: QSAR modeling of toxicity of organic chemicals towards Daphnia magna. Chemom Intel Lab Syst 110:177–181

    Article  CAS  Google Scholar 

  39. MERLIN-Expo. https://merlin-expo.eu/

  40. OpenFoodTox. https://www.efsa.europa.eu/en/microstrategy/openfoodtox

  41. Collaborative Estrogen Receptor Activity Prediction Project (CERAPP). https://www.epa.gov/chemical-research/cerapp-collaborative-estrogen-receptor-activity-prediction-project-0

  42. Collaborative Modeling Project for Androgen Receptor (AR) Activity (CoMPARA). https://cfpub.epa.gov/si/si_public_record_report.cfm?dirEntryId=341701&Lab=NCCT

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Benfenati .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Benfenati, E., Lombardo, A. (2020). VEGAHUB for Ecotoxicological QSAR Modeling. In: Roy, K. (eds) Ecotoxicological QSARs. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0150-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0150-1_30

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0149-5

  • Online ISBN: 978-1-0716-0150-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics