Skip to main content

Quantitative Structure-Toxicity Relationship Models Based on Hydrophobicity and Electrophilicity

  • Protocol
  • First Online:
Book cover Ecotoxicological QSARs

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

In pharmaceutical research, particularly in the preclinical stages of drug discovery, quantitative structure-activity relationship (QSAR) is being increasingly utilized to avoid costly experimentation and tedious extraction of relevant information from big chemical databases. QSAR modelling is also used in modelling environmental toxicity of chemicals. In the current study, toxicity (pLC50/pIGC50) to Pimephales promelas and Tetrahymena pyriformis has been investigated by using electrophilicity index, its square and cubic terms. Hydrophobicity is known as one of the important predictors, and accordingly it has also been employed to improve the models. The widely used multiple linear regression (MLR) method has been implemented to determine regression coefficients indicating the predictive power of the descriptors used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cros A (1863) Action de l'alcool amylique sur l’organisme. Faculté de médecine de Strasbourg, France

    Google Scholar 

  2. Brown AC, Fraser TR (1868) V.—On the connection between chemical constitution and physiological action. Part. I.—On the physiological action of the salts of the ammonium bases, derived from strychnia, brucia, thebaia, codeia, morphia, and nicotia. Earth Environ Sci Trans R Soc Edinburgh 25:151–203

    Google Scholar 

  3. Richardson B (1869) Physiological research on alcohols. Med Times Gazzette 2:703–706

    Google Scholar 

  4. Mills EJ (1884) On melting point and boiling point as related to composition. Philos Mag 17:173–187

    Article  Google Scholar 

  5. Richet C (1893) Comptes rendus des seances de la societe de biologie et de ses filiales. Soc Biol Ses Fil 9:775–776

    Google Scholar 

  6. Meyer H (1899) The theory of alcohol narcosis [Zur Theorie der Alkoholnarkose] arch. Exp Pathol Pharmakol 42:109–118

    Article  Google Scholar 

  7. Overton CE (1901) Studien über die Narkose zugleich ein Beitrag zur allgemeinen Pharmakologie. Fischer, Jena

    Google Scholar 

  8. Hammett LP (1935) Some relations between reaction rates and equilibrium constants. Chem Rev 17:125–136

    Article  CAS  Google Scholar 

  9. Hammett LP (1937) The effect of structure upon the reactions of organic compounds. Benzene derivatives. J Am Chem Soc 59:96–103

    Article  CAS  Google Scholar 

  10. Ferguson J (1939) The use of chemical potentials as indices of toxicity. Proc R Soc Lond Ser B 127:387–404

    Article  CAS  Google Scholar 

  11. Albert A, Rubbo S, Goldacre R, Davey M, Stone J (1945) The influence of chemical constitution on antibacterial activity. Part II: a general survey of the acridine series. Br J Exp Pathol 26:160

    CAS  PubMed Central  Google Scholar 

  12. Albert A (1985) Selective toxicity, 7th edn. Chapman & Hall, London, p 33

    Book  Google Scholar 

  13. Roblin RO Jr, Bell PH (1942) Structure and reactivity of sulphanilamide type compounds. J Am Chem Soc 64:2905–2917

    Article  Google Scholar 

  14. Taft RW Jr (1952) Polar and steric substituent constants for aliphatic and o-benzoate groups from rates of esterification and hydrolysis of esters. J Am Chem Soc 74:3120–3128

    Article  CAS  Google Scholar 

  15. Taft R (1956) Separation of polar, steric and resonance effects in reactivity. In: Steric effects in organic chemistry. Wiley, New York, pp 556–675

    Google Scholar 

  16. Hansch C, Maloney PP, Fujita T, Muir RM (1962) Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature 194:178

    Article  CAS  Google Scholar 

  17. Hansch C, Fujita T (1964) p-σ-π analysis. A method for the correlation of biological activity and chemical structure. J Am Chem Soc 86:1616–1626

    Article  CAS  Google Scholar 

  18. Calais JL (1993) Density-functional theory of atoms and molecules. R.G. Parr and W. Yang, Oxford University Press, New York, Oxford, 1989. Int J Quantum Chem 47:101–101

    Article  Google Scholar 

  19. Chermette H (1999) Chemical reactivity indexes in density functional theory. J Comput Chem 20:129–154

    Article  CAS  Google Scholar 

  20. Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874

    Article  CAS  PubMed  Google Scholar 

  21. Chattaraj PK, Roy D, Giri S, Mukherjee S, Subramanian V, Parthasarathi R, Bultinck P, Van Damme S (2007) An atom counting and electrophilicity based QSTR approach. J Chem Sci 119:475–488

    Article  CAS  Google Scholar 

  22. Chattaraj PK, Parr RG (1993) Density functional theory of chemical hardness. In: Chemical hardness. Springer, Berlin/Heidelberg, pp 11–25

    Chapter  Google Scholar 

  23. Chattaraj PK, Poddar A, Maiti B (2002) Chemical reactivity and dynamics within a density-based quantum mechanical framework. In: Reviews of modern quantum chemistry: a celebration of the contributions of Robert G Parr, vol 2. World Scientific, River Edge, pp 871–935

    Chapter  Google Scholar 

  24. Chattaraj PK (2009) Chemical reactivity theory: a density functional view. CRC Press, Boca Raton

    Book  Google Scholar 

  25. Kohn W, Becke AD, Parr RG (1996) Density functional theory of electronic structure. J Phys Chem 100:12974–12980

    Article  CAS  Google Scholar 

  26. Pearson RG (1990) Hard and soft acids and bases—the evolution of a chemical concept. Coord Chem Rev 100:403–425

    Article  CAS  Google Scholar 

  27. Parr RG, Chattaraj PK (1991) Principle of maximum hardness. J Am Chem Soc 113:1854–1855

    Article  CAS  Google Scholar 

  28. Chattaraj PK, Sengupta S (1996) Popular electronic structure principles in a dynamical context. J Phys Chem 100:16126–16130

    Article  CAS  Google Scholar 

  29. Chamorro E, Chattaraj PK, Fuentealba P (2003) Variation of the electrophilicity index along the reaction path. J Phys Chem A 107:7068–7072

    Article  CAS  PubMed  Google Scholar 

  30. Parthasarathi R, Elango M, Subramanian V, Chattaraj PK (2005) Variation of electrophilicity during molecular vibrations and internal rotations. Theor Chem Acc 113:257–266

    Article  CAS  Google Scholar 

  31. Noorizadeh S (2007) Is there a minimum electrophilicity principle in chemical reactions? Chin J Chem 25:1439–1444

    Article  CAS  Google Scholar 

  32. Estrada E, Uriarte E (2001) Recent advances on the role of topological indices in drug discovery research. Curr Med Chem 8:1573–1588

    Article  CAS  PubMed  Google Scholar 

  33. Balaban AT (1995) Chemical graphs: looking back and glimpsing ahead. J Chem Inf Comput Sci 35:339–350

    Article  CAS  Google Scholar 

  34. Hall LH, Kier LB (1995) Electrotopological state indices for atom types: a novel combination of electronic, topological, and valence state information. J Chem Inf Comput Sci 35:1039–1045

    Article  CAS  Google Scholar 

  35. Kim KH (1993) 3D-quantitative structure-activity relationships: describing hydrophobic interactions directly from 3D structures using a comparative molecular field analysis (CoMFA) approach. Quant Struct-Act Relat 12:232–238

    Article  CAS  Google Scholar 

  36. Raevsky O, Skvortsov V (2005) Quantifying hydrogen bonding in QSAR and molecular modeling. SAR QSAR Environ Res 16:287–300

    Article  CAS  PubMed  Google Scholar 

  37. Kubinyi H (2001) Hydrogen bonding, the last mystery in drug design. In: Pharmacokinetic optimization in drug research. Wiley-VCH:Weinheim, Germany, pp 513–524

    Google Scholar 

  38. Aptula AO, Roberts DW (2006) Mechanistic applicability domains for nonanimal-based prediction of toxicological end points: general principles and application to reactive toxicity. Chem Res Toxicol 19:1097–1105

    Article  CAS  PubMed  Google Scholar 

  39. Chattaraj PK, Lee H, Parr RG (1991) HSAB principle. J Am Chem Soc 113:1855–1856

    Article  CAS  Google Scholar 

  40. Pearson RG (1997) Chemical hardness. Wiley-VCH, Weinheim

    Book  Google Scholar 

  41. Chattaraj PK, Parr RG (1993) Density functional theory of chemical hardness. In: Sen KD, Mingos DMP (eds) Chemical hardness, Structure and bonding, vol 80. Springer, Berlin

    Chapter  Google Scholar 

  42. Pauling L (1960) The nature of the chemical bond, vol 260. Cornell University Press, Ithaca

    Google Scholar 

  43. Sen K, Jorgenson C (1987) Structure and bonding, Electronegativity, vol 66. Springer, Berlin

    Google Scholar 

  44. Pauling L (1932) The nature of the chemical bond. IV. The energy of single bonds and the relative electronegativity of atoms. J Am Chem Soc 54:3570–3582

    Article  CAS  Google Scholar 

  45. Mulliken RS (1934) A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities. J Chem Phys 2:782–793

    Article  CAS  Google Scholar 

  46. Allred AL, Rochow EG (1958) A scale of electronegativity based on electrostatic force. J Inorg Nucl Chem 5:264–268

    Article  CAS  Google Scholar 

  47. Gordy W (1946) A relation between bond force constants, bond orders, bond lengths, and the electronegativities of the bonded atoms. J Chem Phys 14:305–320

    Article  CAS  Google Scholar 

  48. Sanderson R (1988) Principles of electronegativity Part I. General nature. J Chem Educ 65:112

    Article  CAS  Google Scholar 

  49. Iczkowski RP, Margrave JL (1961) Electronegativity. J Am Chem Soc 83:3547–3551

    Article  CAS  Google Scholar 

  50. Klopman G (1968) Chemical reactivity and the concept of charge-and frontier-controlled reactions. J Am Chem Soc 90:223–234

    Article  CAS  Google Scholar 

  51. Hinze J, Jaffe HH (1962) Electronegativity. I. Orbital electronegativity of neutral atoms. J Am Chem Soc 84:540–546

    Article  CAS  Google Scholar 

  52. Mortier WJ, Ghosh SK, Shankar S (1986) Electronegativity-equalization method for the calculation of atomic charges in molecules. J Am Chem Soc 108:4315–4320

    Article  CAS  Google Scholar 

  53. Parr RG, Donnelly RA, Levy M, Palke WE (1978) Electronegativity: the density functional viewpoint. J Chem Phys 68:3801–3807

    Article  CAS  Google Scholar 

  54. Parr RG, Weitao Y (1989) Density-functional theory of atoms and molecules. Oxford University Press, New York

    Google Scholar 

  55. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864

    Article  Google Scholar 

  56. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133

    Article  Google Scholar 

  57. Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516

    Article  CAS  Google Scholar 

  58. Berkowitz M, Parr RG (1988) Molecular hardness and softness, local hardness and softness, hardness and softness kernels, and relations among these quantities. J Chem Phys 88:2554–2557

    Article  CAS  Google Scholar 

  59. Ayers PW (2001) Strategies for computing chemical reactivity indices. Theor Chem Acc 106:271–279

    Article  CAS  Google Scholar 

  60. Maynard A, Huang M, Rice W, Covell D (1998) Reactivity of the HIV-1 nucleocapsid protein p7 zinc finger domains from the perspective of density-functional theory. Proc Natl Acad Sci U S A 95:11578–11583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Parr RG, Szentpály L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    Article  CAS  Google Scholar 

  62. Roy D, Pal N, Mitra A, Bultinck P, Parthasarathi R, Subramanian V, Chattaraj PK (2007) An atom counting strategy towards analyzing the biological activity of sex hormones. Eur J Med Chem 42:1365–1369

    Article  CAS  PubMed  Google Scholar 

  63. Parthasarathi R, Subramanian V, Roy DR, Chattaraj PK (2004) Electrophilicity index as a possible descriptor of biological activity. Bioorg Med Chem Lett 12:5533–5543

    Article  CAS  Google Scholar 

  64. Parthasarathi R, Padmanabhan J, Subramanian V, Maiti B, Chattaraj PK (2003) Chemical reactivity profiles of two selected polychlorinated biphenyls. J Phys Chem A 107:10346–10352

    Article  CAS  Google Scholar 

  65. Parthasarathi R, Padmanabhan J, Subramanian V, Maiti B, Chattaraj PK (2004) Toxicity analysis of 33′44′5-pentachloro biphenyl through chemical reactivity and selectivity profiles. Curr Sci 86:535

    CAS  Google Scholar 

  66. Roy D, Parthasarathi R, Subramanian V, Chattaraj PK (2006) An electrophilicity based analysis of toxicity of aromatic compounds towards Tetrahymena pyriformis. QSAR Comb Sci 25:114–122

    Article  CAS  Google Scholar 

  67. Padmanabhan J, Parthasarathi R, Subramanian V, Chattaraj PK (2006) Group philicity and electrophilicity as possible descriptors for modeling ecotoxicity applied to chlorophenols. Chem Res Toxicol 19:356–364

    Article  CAS  PubMed  Google Scholar 

  68. Hermens J, Busser F, Leeuwanch P, Musch A (1985) Quantitative correlation studies between the acute lethal toxicity of 15 organic halides to the guppy (Poecillah Reticulata) and chemical reactivity towards 4-nitrobenzylpyridine. Toxicol Environ Chem 9:219–236

    Article  CAS  Google Scholar 

  69. Roberts DW, Schultz TW, Wolf EM, Aptula AO (2009) Experimental reactivity parameters for toxicity modeling: application to the acute aquatic toxicity of SN2 electrophiles to Tetrahymena pyriformis. Chem Res Toxicol 23:228–234

    Article  CAS  Google Scholar 

  70. Schultz TW, Netzeva TI, Roberts DW, Cronin MT (2005) Structure − toxicity relationships for the effects to Tetrahymena pyriformis of aliphatic, carbonyl-containing, α, β-unsaturated chemicals. Chem Res Toxicol 18:330–341

    Article  CAS  PubMed  Google Scholar 

  71. Suter GW (1989) Aquatic toxicology and environmental fate: eleventh volume, vol 11. ASTM International Chem Biol Drug Des, Philadelphia

    Google Scholar 

  72. Hansch C, Kurup A, Garg R, Gao H (2001) Chem-bioinformatics and QSAR: a review of QSAR lacking positive hydrophobic terms. Chem Rev 101:619–672

    Article  CAS  PubMed  Google Scholar 

  73. Hansch C, Hoekman D, Leo A, Weininger D, Selassie CD (2002) Chem-bioinformatics: comparative QSAR at the interface between chemistry and biology. Chem Rev 102:783–812

    Article  CAS  PubMed  Google Scholar 

  74. Roberts D, Williams D (1982) The derivation of quantitative correlations between skin sensitisation and physio-chemical parameters for alkylating agents, and their application to experimental data for sultones. J Theor Biol 99:807–825

    Article  CAS  PubMed  Google Scholar 

  75. Roberts D, Goodwin B, Williams D, Jones K, Johnson A, Alderson J (1983) Correlations between skin sensitization potential and chemical reactivity for p-nitrobenzyl compounds. Food Chem Toxicol 21:811–813

    Article  CAS  PubMed  Google Scholar 

  76. Roberts D, Basketter D (1990) A quantitative structure activity/dose response relationship for contact allergic potential of alkyl group transfer agents. Contact Dermatitis 23:331–335

    Article  CAS  PubMed  Google Scholar 

  77. Roberts DW, Aptula AO, Patlewicz G (2007) Electrophilic chemistry related to skin sensitization. Reaction mechanistic applicability domain classification for a published data set of 106 chemicals tested in the mouse local lymph node assay. Chem Res Toxicol 20:44–60

    Article  CAS  PubMed  Google Scholar 

  78. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr. JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz, JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2004) Gaussian 03, Revision C.02, Wallingford, CT

    Google Scholar 

  79. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR,. Scalmani G, Barone V, Mennucci B, Petersson GA et al. (2009) Gaussian 09, Revision D.01, Wallingford CT, vol 121, pp 150–166

    Google Scholar 

  80. Pal R, Jana G, Sural S, Chattaraj PK (2018) Hydrophobicity versus electrophilicity: a new protocol toward quantitative structure–toxicity relationship. Chem Bio Drug Des 93:1083–1095. https://doi.org/10.1111/cbdd.13428

    Article  CAS  Google Scholar 

  81. Bertinetto C, Duce C, Solaro R, Héberger K (2013) Modeling of the acute toxicity of benzene derivatives by complementary QSAR methods. MATCH Commun Math Comput Chem 70:1005–1021

    CAS  Google Scholar 

  82. Jana G, Pal R, Sural S, Chattaraj PK (2019) Quantitative structure – toxicity relationship: an “in silico study” using electrophilicity and hydrophobicity as descriptors. Int J Quantum Chem (Provisionally accepted)

    Google Scholar 

  83. Schultz TW (1997) TETRATOX database. Toxicol Methods 7:289. http://www.vet.utk.edu/TETRATOX/

    Article  CAS  Google Scholar 

Download references

Acknowledgments

PKC would like to thank the Volume Editor, Prof. Kunal Roy, for kindly inviting him to contribute a chapter entitled, “Quantitative Structure-Toxicity Relationship Models Based on Hydrophobicity and Electrophilicity” for the book Ecotoxicological QSARs. He also thanks DST, New Delhi, for the J. C. Bose National Fellowship. SS thanks CSE for the computational facilities. GJ and RP thank IIT, Kharagpur, and CSIR, respectively, for their fellowships.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shamik Sural or Pratim Kumar Chattaraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jana, G., Pal, R., Sural, S., Chattaraj, P.K. (2020). Quantitative Structure-Toxicity Relationship Models Based on Hydrophobicity and Electrophilicity. In: Roy, K. (eds) Ecotoxicological QSARs. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0150-1_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0150-1_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0149-5

  • Online ISBN: 978-1-0716-0150-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics