Skip to main content

Combination of Read-Across and QSAR for Ecotoxicity Prediction: A Case Study of Green Algae Growth Inhibition Toxicity Data

  • Protocol
  • First Online:
Ecotoxicological QSARs

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Effective prediction of the ecotoxicity of chemicals is important for environmental hazard and risk assessment. A previously reported three-step strategy for predicting 72-h growth inhibition toxicity against the green alga Pseudokirchneriella subcapitata has potential utility as a general framework for algal toxicity prediction. This strategy, which combines read-across and quantitative structure–activity relationship (QSAR), consists of a pre-screening process followed by three steps. At Step 1, an interspecies QSAR is used to predict the toxicities of chemicals that satisfy a log D-based criterion. At Step 2, the toxicities of nonpolar and polar narcotic chemicals (Class 1 and Class 2, respectively) are predicted with QSARs. At Step 3, read-across based on defined categories of chemicals is used for any remaining compounds. In this case study, the generalizability of the three-step strategy was evaluated by applying it to a recently published data set of 48-h growth inhibition toxicities against Pseudokirchneriella subcapitata. At the pre-screening stage, new category definitions were required for each endpoint having different test conditions used to obtain the data that were used to develop the strategy. Because the interspecies QSAR used at Step 1 requires 48-h acute Daphnia magna toxicity (immobilization or mortality) as a descriptor, the fact that Daphnia magna data were lacking or unreliable for some of the compounds in the data set limited the utility of the three-step strategy. To circumvent this problem, read-across or local QSAR could be used instead of the interspecies QSAR at Step 1. At Step 2, the QSAR for nonpolar narcotic chemicals developed for the three-step strategy was applicable to the 48-h toxicity data set used in this case study; in contrast, the QSAR for polar narcotics showed unreliable predictivity when tested on the 48-h toxicity data set. Therefore, the polar narcotic QSAR was reconstructed so that it was applicable to the 48-h toxicity data. At Step 3, new categories for read-across were introduced to deal with the 48-h toxicity data; specifically, the chemical categories were classified into three types: Type A for toxic categories, Type B for categories applicable for read-across, and Type C for categories that were difficult to classify for read-across.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. OECD (2013) OECD guidelines for testing of chemicals. Test no. 210: fish, early-life stage toxicity test. OECD, Paris

    Google Scholar 

  2. OECD (2012) OECD guidelines for testing of chemicals. Test no. 211: Daphnia magna reproduction test. OECD, Paris

    Book  Google Scholar 

  3. OECD (2011) OECD guidelines for testing of chemicals. Test no. 201: Freshwater alga and cyanobacteria, growth inhibition test. OECD, Paris

    Google Scholar 

  4. OECD (2004) OECD guidelines for testing of chemicals. Test no. 202: Daphnia sp. acute immobilization test. OECD, Paris

    Google Scholar 

  5. OECD (1992) OECD guidelines for testing of chemicals. Test no. 203: fish acute toxicity test. OECD, Paris

    Google Scholar 

  6. Klimisch HJ, Andreae M, Tillmann U (1997) A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regul Toxicol Pharmacol 25:1–5

    Article  CAS  PubMed  Google Scholar 

  7. OECD (2016) OECD series on testing and assessment No. 260, Guidance document for the use of adverse outcome pathways in developing integrated Approaches to Testing and Assessment (IATA). OECD, Paris

    Google Scholar 

  8. Kienzler A, Barron MG, Belanger SE, Beasley A, Embry MR (2017) Mode of action (MOA) assignment classifications for ecotoxicology: an evaluation of approaches. Environ Sci Technol 51:10203–10211

    Article  CAS  PubMed  Google Scholar 

  9. Kienzler A, Barron MG, Belanger SE, Beasley A, Embry MR (2017) Response to “Comment on ‘Mode of action (MOA) assignment classifications for ecotoxicology: an evaluation of approaches’”. Environ Sci Technol 51:13511–13512

    Article  CAS  PubMed  Google Scholar 

  10. McCarty LS, Borgert CJ (2017) Comment on “Mode of action (MOA) assignment classifications for ecotoxicology: an evaluation of approaches”. Environ Sci Technol 51:13509–13510

    Article  CAS  PubMed  Google Scholar 

  11. Bauer FJ, Thomas PC, Fouchard SY, Neunlist SJM (2018) A new classification algorithm based on mechanisms of action. Computat Toxicol 5:8–15

    Article  Google Scholar 

  12. Scholz S, Schreiber R, Armitage J, Mayer P, Escher BI, Lidzba A, Leonard M, Altenburger R (2018) Meta-analysis of fish early life stage tests-association of toxic ratios and acute-to-chronic ratios with modes of action. Environ Toxicol Chem 37:955–969

    Article  CAS  PubMed  Google Scholar 

  13. U.S. Environmental Protection Agency ECOSAR. http://www.epa.gov/tsca-screening-tools/ecological-structure-activity-relationships-ecosar-predictive-model. Accessed 25 Jan 2016

  14. OECD (2015) OECD series on testing and assessment, No. 229, Fundamental and guiding principles for (Q)SAR analysis of chemical carcinogens with mechanistic considerations. OECD, Paris

    Google Scholar 

  15. Furuhama A, Hasunuma K, Hayashi TI, Tatarazako N (2016) Predicting algal growth inhibition toxicity: three-step strategy using structural and physicochemical properties. SAR QSAR Environ Res 27:343–362

    Article  CAS  PubMed  Google Scholar 

  16. Kusk KO, Christensen AM, Nyholm N (2018) Algal growth inhibition test results of 425 organic chemical substances. Chemosphere 204:405–412

    Article  CAS  PubMed  Google Scholar 

  17. Furuhama A, Hasunuma K, Aoki Y (2015) Interspecies quantitative structure–activity relationships (QSARs) for eco-toxicity screening of chemicals: the role of physicochemical properties. SAR QSAR Environ Res 26:809–830

    Article  CAS  PubMed  Google Scholar 

  18. Furuhama A (2016) Corrigendum. SAR QSAR Environ Res 27:245–247

    Article  CAS  Google Scholar 

  19. Verhaar HJM, van Leeuwen CJ, Hermens JLM (1992) Classifying environmental pollutants. 1: structure-activity relationships for prediction of aquatic toxicity. Chemosphere 25:471–491

    Article  CAS  Google Scholar 

  20. Verhaar HJM, Solbe J, Speksnijder J, van Leeuwen CJ, Hermens JLM (2000) Classifying environmental pollutants: part 3. External validation of the classification system. Chemosphere 40:875–883

    Article  CAS  PubMed  Google Scholar 

  21. Enoch SJ, Hewitt M, Cronin MTD, Azam S, Madden JC (2008) Classification of chemicals according to mechanism of aquatic toxicity: an evaluation of the implementation of the Verhaar scheme in Toxtree. Chemosphere 73:243–248

    Article  CAS  PubMed  Google Scholar 

  22. Cronin MTD (2010) Chapter 18 Biological read-across: mechanistically-based species-species and endpoint-endpoint extrapolations. In: Cronin MTD, Madden JC (eds) In silico toxicology: principles and applications. The Royal Society of Chemistry, Cambridge, pp 446–477

    Google Scholar 

  23. Cronin MTD, Netzeva TI, Dearden JC, Edwards R, Worgan ADP (2004) Assessment and modeling of the toxicity of organic chemicals to Chlorella vulgaris: development of a novel database. Chem Res Toxicol 17:545–554

    Article  CAS  PubMed  Google Scholar 

  24. Benfenati E, Roncaglioni A, Petoumenou MI, Cappelli CI, Gini G (2015) Integrating QSAR and read-across for environmental assessment. SAR QSAR Environ Res 26:605–618

    Article  CAS  PubMed  Google Scholar 

  25. International Organization for Standardization (1997) Water quality – fresh water algal growth test with Scenedesmus subspicatus and Raphidocelis subcapitata. ISO Standard 8692. Geneva

    Google Scholar 

  26. Fu L, Li JJ, Wang Y, Wang XH, Wen Y, Qin WC, Su LM, Zhao YH (2015) Evaluation of toxicity data to green algae and relationship with hydrophobicity. Chemosphere 120:16–22

    Article  CAS  PubMed  Google Scholar 

  27. Wang XH, Yu Y, Fu L, Tai HW, Qin WC, Su LM, Zhao YH (2016) Comparison of chemical toxicity to different algal species based on interspecies correlation, species sensitivity, and excess toxicity. Clean (Weinh) 44:803–808

    CAS  Google Scholar 

  28. Weininger D (1988) SMILES, a chemical language and information-system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 28:31–36

    Article  CAS  Google Scholar 

  29. Daylight Chemical Information Systems Inc. Daylight theory manual, 4. SMARTSR – A language for describing molecular patterns. http://www.daylight.com/dayhtml/doc/theory/theory.smarts.html. Accessed 13 Jun 2019

  30. ACD/Labs, version 2018. Advanced chemistry development, Inc., Toronto, ON, Canada

    Google Scholar 

  31. ACD/LogD, version 2018. Advanced chemistry development, Inc., Toronto, ON, Canada

    Google Scholar 

  32. The QSAR toolbox version 4.3. https://qsartoolbox.org/. Accessed 10 Apr 2019

  33. Patlewicz G, Jeliazkova N, Safford RJ, Worth AP, Aleksiev B (2008) An evaluation of the implementation of the Cramer classification scheme in the Toxtree software. SAR QSAR Environ Res 19:495–524

    Article  CAS  PubMed  Google Scholar 

  34. Toxtree. http://toxtree.sourceforge.net. Accessed 10 May 2019

  35. Dewar MJS, Zoebisch EG, Healy EF, Stewart JJP (1985) Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model. J Am Chem Soc 107:3902–3909

    Article  CAS  Google Scholar 

  36. Stewart JJP (1993) MOPAC 7. http://openmopac.net/Downloads/Downloads.html. Accessed 13 Jun 2019

  37. Council BCP (2015) The pesticide manual 17th edition: a world compendium. British Crop Protection Council, Alton, Hampshire, UK

    Google Scholar 

  38. Council BCP (2015) More on the pesticide manual: view supplementary entries. British Crop Protection Council. http://www.bcpc.org/page_Supplementary-Entries_102.html. Accessed 12 Nov 2015

  39. Błędzka D, Gromadzińska J, Wąsowicz W (2014) Parabens. From environmental studies to human health. Environ Int 67:27–42

    Article  PubMed  CAS  Google Scholar 

  40. Yamamoto H, Tamura I, Hirata Y, Kato J, Kagota K, Katsuki S, Yamamoto A, Kagami Y, Tatarazako N (2011) Aquatic toxicity and ecological risk assessment of seven parabens: individual and additive approach. Sci Total Environ 410–411:102–111

    Article  PubMed  CAS  Google Scholar 

  41. Yamamoto H, Nakamura Y, Nakamura Y, Kitani C, Imari T, Sekizawa J, Takao Y, Yamashita N, Hirai N, Oda S, Tatarazako N (2007) Initial ecological risk assessment of eight selected human pharmaceuticals in Japan. Environ Sci 14(4):177–193

    CAS  PubMed  Google Scholar 

  42. Halling-Sørensen B (2000) Algal toxicity of antibacterial agents used in intensive farming. Chemosphere 40:731–739

    Article  PubMed  Google Scholar 

  43. Yang LH, Ying GG, Su HC, Stauber JL, Adams MS, Binet MT (2008) Growth-inhibiting effects of 12 antibacterial agents and their mixtures on the freshwater microalga Pseudokirchneriella subcapitata. Environ Toxicol Chem 27:1201–1208

    Article  CAS  PubMed  Google Scholar 

  44. Ji K, Kim S, Han S, Seo J, Lee S, Park Y, Choi K, Kho Y-L, Kim P-G, Park J, Choi K (2012) Risk assessment of chlortetracycline, oxytetracycline, sulfamethazine, sulfathiazole, and erythromycin in aquatic environment: are the current environmental concentrations safe? Ecotoxicology 21:2031–2050

    Article  CAS  PubMed  Google Scholar 

  45. Park S, Choi K (2008) Hazard assessment of commonly used agricultural antibiotics on aquatic ecosystems. Ecotoxicology 17:526–538

    Article  CAS  PubMed  Google Scholar 

  46. Wollenberger L, Halling-Sørensen B, Kusk KO (2000) Acute and chronic toxicity of veterinary antibiotics to Daphnia magna. Chemosphere 40:723–730

    Article  CAS  PubMed  Google Scholar 

  47. Roy K, Kar S, Das R (2015) Statistical methods in QSAR/QSPR. In: A primer on QSAR/QSPR modeling: fundamental concepts. Springer International Publishing, pp 37–59. https://www.springer.com/gp/book/978331917280

  48. Golbraikh A, Tropsha A (2018) QSAR/QSPR revisited. In: Engel T, Gasteiger J (eds) Chemoinformatics: basic concepts and methods. Wiley, Weinheim, pp 465–495

    Chapter  Google Scholar 

  49. KAshinhou Tool for Ecotoxicity (KATE) is an ecotoxicity prediction system that consists of QSAR models and was researched and developed under contract with the Ministry of the Environment, Government of Japan from fiscal year 2004 to fiscal year 2018 by the Center for Health and Environmental Risk Research of the National Institute for Environmental Studies. https://kate.nies.go.jp/. Accessed 29 Apr 2019

  50. Golbamaki A, Cassano A, Lombardo A, Moggio Y, Colafranceschi M, Benfenati E (2014) Comparison of in silico models for prediction of Daphnia magna acute toxicity. SAR QSAR Environ Res 25:673–694

    Article  CAS  PubMed  Google Scholar 

  51. Hsieh S-H, Hsu C-H, Tsai D-Y, Chen C-Y (2006) Quantitative structure-activity relationships for toxicity of nonpolar narcotic chemicals to Pseudokirchneriella subcapitata. Environ Toxicol Chem 25:2920–2926

    Article  CAS  PubMed  Google Scholar 

  52. Tsai K-P, Chen C-Y (2007) An algal toxicity database of organic toxicants derived by a closed-system technique. Environ Toxicol Chem 26:1931–1939

    Article  CAS  PubMed  Google Scholar 

  53. Aruoja V, Moosus M, Kahru A, Sihtmaee M, Maran U (2014) Measurement of baseline toxicity and QSAR analysis of 50 non-polar and 58 polar narcotic chemicals for the alga Pseudokirchneriella subcapitata. Chemosphere 96:23–32

    Article  CAS  PubMed  Google Scholar 

  54. Fu L, Huang T, Wang S, Wang X, Su L, Li C, Zhao Y (2017) Toxicity of 13 different antibiotics towards freshwater green algae Pseudokirchneriella subcapitata and their modes of action. Chemosphere 168:217–222

    Article  CAS  PubMed  Google Scholar 

  55. U.S. Environmental Protection Agency KOWWIN™: Estimates the log octanol-water partition coefficient, log KOW, of chemicals using an atom/fragment contribution method. https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface. Accessed 7 May 2019

  56. OECD (2014) OECD series on testing and assessment, No. 194, Guidance on grouping of chemicals, 2nd edn. OECD, Paris

    Google Scholar 

  57. Von der Ohe PC, Kühne R, Ebert RU, Altenburger R, Liess M, Schüürmann G (2005) Structural alerts – a new classification model to discriminate excess toxicity from narcotic effect levels of organic compounds in the acute daphnid assay. Chem Res Toxicol 18:536–555

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Drs. Y. Aoki, T.I. Hayashi, and H. Yamamoto, Professor N. Tatarazako, and Mr. K. Hasunuma for their helpful discussions about the interspecies QSAR and about the three-step strategy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayako Furuhama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Furuhama, A. (2020). Combination of Read-Across and QSAR for Ecotoxicity Prediction: A Case Study of Green Algae Growth Inhibition Toxicity Data. In: Roy, K. (eds) Ecotoxicological QSARs. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0150-1_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0150-1_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0149-5

  • Online ISBN: 978-1-0716-0150-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics