Skip to main content

A Brief Introduction to Quantitative Structure-Activity Relationships as Useful Tools in Predictive Ecotoxicology

  • Protocol
  • First Online:
Ecotoxicological QSARs

Abstract

This introductory chapter highlights the applications of quantitative structure-activity relationships (QSARs) in the assessment of ecotoxicological risk posed by the chemicals used in our day-to-day life and in the industries. A wide variety of chemicals (industrial substances/toxicants/pollutants) are emitted into the environment from various sources. These chemicals may be pharmaceuticals, personal care products, nanomaterials, plasticizers, flame retardants, endocrine disruptors, pesticides, persistent organic pollutants (POPs), etc. The continuous emissions of chemicals into the environment and the resultant pollution effects and potential exposure of living organisms and humans to these noxious substances may pose a risk to the ecosystem and human health. The experimental determination of toxicities of these chemicals involving different aquatic organisms and laboratory animals is a lengthy, time-consuming, and costly process. In this scenario, QSAR is quite useful for the prediction of toxicities of these chemicals prior to their use on a large scale. QSAR models could also be used further to predict the toxicity of any designed chemicals and would thus be helpful for green chemical design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De P, Roy K (2018) Greener chemicals for the future: QSAR modelling of the PBT index using ETA descriptors. SAR QSAR Environ Res 29:319–337

    Article  CAS  PubMed  Google Scholar 

  2. Gajewicz A, Jagiello K, Cronin M, Leszczynski J, Puzyn T (2017) Addressing a bottle neck for regulation of nanomaterials: quantitative read-across (Nano-QRA) algorithm for cases when only limited data is available. Environ Sci Nano 4:346–358

    Article  CAS  Google Scholar 

  3. Roy K (2019) In silico drug design: repurposing techniques and methodologies. Academic Press, New York

    Google Scholar 

  4. Dearden JC (2017) The history and development of quantitative structure-activity relationships (QSARs). In: Oncology: breakthroughs in research and practice. IGI Global, Hershey, pp 67–117

    Chapter  Google Scholar 

  5. Khan K, Benfenati E, Roy K (2019) Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: ranking and prioritization of the DrugBank database compounds. Ecotox Environ Safe 168:287–297

    Article  CAS  Google Scholar 

  6. OECD (2014) Guidance document on the validation of (quantitative) structure-activity relationship [(Q)SAR] models, OECD series on testing and assessment, no. 69. OECD Publishing, Paris. Available at https://doi.org/10.1787/9789264085442-en

  7. Roy K, Das RN, Ambure P, Aher RB (2016) Be aware of error measures. Further studies on validation of predictive QSAR models. Chemom Intell Lab Syst 152(229):18–33

    Article  CAS  Google Scholar 

  8. Hu X, Hu Y, Vogt M, Stumpfe D, Bajorath J (2012) MMP-cliffs: systematic identification of activity cliffs on the basis of matched molecular pairs. J Chem Inf Model 52:1138–1145

    Article  CAS  PubMed  Google Scholar 

  9. Kar S, Gajewicz A, Puzyn T, Roy K, Leszczynski J (2014) Periodic table-based descriptors to encode cytotoxicity profile of metal oxide nanoparticles: a mechanistic QSTR approach. Ecotoxicol Environ Saf 107:162–169

    Article  CAS  PubMed  Google Scholar 

  10. Todeschini R, Consonni V (2000) Methods and principles in medicinal chemistry. In: Kubinyi H, Timmerman H (Series eds) Handbook of molecular descriptors. Wiley-VCH, Weinheim

    Google Scholar 

  11. Golmohammadi H, Dashtbozorgi Z, Acree WE Jr (2012) Quantitative structure-activity relationship prediction of blood-to-brain partitioning behavior using support vector machine. Eur J Pharm Sci 47:421–429

    Article  CAS  PubMed  Google Scholar 

  12. Kennard RW, Stone LA (1969) Computer aided design of experiments. Technometrics 11:137–148

    Article  Google Scholar 

  13. Hartigan JA, Wong MA (1979) Algorithm AS 136: a k-means clustering algorithm. J R Stat Soc C-Appl 28:100–108

    Google Scholar 

  14. Roy K (2018) Quantitative structure-activity relationships (QSARs): a few validation methods and software tools developed at the DTC laboratory. J Indian Chem Soc 95:1497–1502

    CAS  Google Scholar 

  15. Khan PM, Roy K (2018) Current approaches for choosing feature selection and learning algorithms in quantitative structure-activity relationships (QSAR). Expert Opin Drug Dis 13:1075–1089

    Article  CAS  Google Scholar 

  16. De P, Aher RB, Roy K (2018) Chemometric modeling of larvicidal activity of plant derived compounds against zika virus vector Aedes aegypti: application of ETA indices. RSC Adv 8:4662–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. De P, Kar S, Roy K, Leszczynski J (2018) Second generation periodic table-based descriptors to encode toxicity of metal oxide nanoparticles to multiple species: QSTR modeling for exploration of toxicity mechanisms. Environ Sci-Nano 5:2742–2760

    Article  CAS  Google Scholar 

  18. Roy K, Kar S, Das RN (2015) Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment. Academic Press, Amsterdam

    Google Scholar 

  19. Roy K, Kar S, Ambure P (2015) On a simple approach for determining applicability domain of QSAR models. Chemometr Intell Lab Syst 145:22–29

    Article  CAS  Google Scholar 

  20. Roy K, Mitra I (2011) On various metrics used for validation of predictive QSAR models with applications in virtual screening and focused library design. Comb Chem High Throughput Screen 14:450–474

    Article  CAS  PubMed  Google Scholar 

  21. Roy K, Mitra I, Kar S, Ojha PK, Das RN, Kabir H (2012) Comparative studies on some metrics for external validation of QSPR models. J Chem Inf Model 52:396–408

    Article  CAS  PubMed  Google Scholar 

  22. Roy K (2019) Multi-target drug design using chem-bioinformatic approaches. Springer, New York

    Book  Google Scholar 

  23. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst 58:109–130

    Article  CAS  Google Scholar 

  24. Baumann D, Baumann K (2014) Reliable estimation of prediction errors for QSAR models under model uncertainty using double cross-validation. J Cheminform 6:47

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Roy K, Ambure P (2016) The “double cross-validation” software tool for MLR QSAR model development. Chemom Intell Lab Syst 159:108–126

    Article  CAS  Google Scholar 

  26. Roy K, Ambure P, Kar S, Ojha PK (2018) Is it possible to improve the quality of predictions from an “intelligent” use of multiple QSAR/QSPR/QSTR models? J Chemom 32:e2992

    Article  CAS  Google Scholar 

  27. Roy K, Ambure P, Kar S (2018) “Prediction reliability indicator”: a new tool to judge the quality of predictions from QSAR models for new query compounds. In: 24 May 2018 in MOL2NET 2018. International conference on multidisciplinary sciences, MDPI AG, Basel

    Google Scholar 

  28. Roy K, Ambure P, Kar S (2018) How precise are our quantitative structure-activity relationship derived predictions for new query chemicals? ACS Omega 3:11392–11406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khan K, Khan PM, Lavado G, Valsecchi C, Pasqualini J, Baderna D, Marzo M, Lombardo A, Roy K, Benfenati E (2019) QSAR modeling of Daphnia magna and fish toxicities of biocides using 2D descriptors. Chemosphere. https://doi.org/10.1016/j.chemosphere.2019.04.204

    Article  CAS  PubMed  Google Scholar 

  30. Kar S, Roy K, Leszczynski J (2017) On applications of QSARs in food and agricultural sciences: history and critical review of recent developments. In: Advances in QSAR modeling. Springer, Cham, pp 203–302

    Chapter  Google Scholar 

  31. Khan PM, Roy K, Benfenati E (2019) Chemometric modeling of Daphnia magna toxicity of agrochemicals. Chemosphere 224:470–479

    Article  CAS  PubMed  Google Scholar 

  32. Roy K (2017) Advances in QSAR modeling. In: Applications in pharmaceutical, chemical, food, agricultural and environmental sciences. Springer, Cham, p 555

    Google Scholar 

  33. Khan K, Kar S, Sanderson H, Roy K, Leszczynski J (2017) Ecotoxicological assessment of pharmaceuticals using computational toxicology approaches: QSTR and interspecies QTTR modeling. In: Proceedings of MOL2NET 2017, international conference on multidisciplinary sciences, 3rd edn. MDPI AG, Basel, p 1

    Google Scholar 

  34. Das S, Ojha PK, Roy K (2017) Multilayered variable selection in QSPR: a case study of modeling melting point of bromide ionic liquids. Int J Quant Struct-Prop Relat (IJQSPR) 2:106–124

    CAS  Google Scholar 

  35. Das S, Ojha PK, Roy K (2017) Development of a temperature dependent 2D-QSPR model for viscosity of diverse functional ionic liquids. J Mol Liq 240:454–467

    Article  CAS  Google Scholar 

  36. Ojha PK, Kar S, Roy K, Leszczynski J (2019) Toward comprehension of multiple human cells uptake of engineered nano metal oxides: quantitative inter cell line uptake specificity (QICLUS) modeling. Nanotoxicology 31:14–34

    Article  CAS  Google Scholar 

  37. Ghosh S, Ojha PK, Roy K (2019) Exploring QSPR modeling for adsorption of hazardous synthetic organic chemicals (SOCs) by SWCNTs. Chemosphere 228:545–555

    Article  CAS  PubMed  Google Scholar 

  38. Roy J, Ojha PK, Roy K (2019) Risk assessment of heterogeneous TiO2-based engineered nanoparticles (NPs): a QSTR approach using simple periodic table based descriptors. Nanotoxicology 13:701–716

    Article  CAS  PubMed  Google Scholar 

  39. Khan K, Roy K (2017) Ecotoxicological modelling of cosmetics for aquatic organisms: a QSTR approach. SAR QSAR Environ Res 28:567–594

    Article  CAS  PubMed  Google Scholar 

  40. Hossain KA, Roy K (2018) Chemometric modeling of toxicity of contaminants of emerging concern to Dugesia japonica and its interspecies correlation with daphnia and fish: QSTR and i-QSTTR approaches. In: MOL2NET 2018, international conference on multidisciplinary sciences, 4th edn. https://sciforum.net/paper/view/conference/5266

  41. Ghanem OB, Mutalib MIA, Leveque J-M, El-Harbawi M (2017) Development of QSAR model to predict the ecotoxicity of Vibrio fischeri using COSMO-RS descriptors. Chemosphere 170:242–250

    Article  CAS  PubMed  Google Scholar 

  42. Farahani SR, Sohrabi MR, Ghasemi JB (2018) A detailed structural study of cytotoxicity effect of ionic liquids on the leukemia rat cell line IPC-81 by three dimensional quantitative structure toxicity relationship. Ecotoxicol Environ Saf 158:256–265

    Article  CAS  PubMed  Google Scholar 

  43. Das RN, Sintra TE, Coutinho JAP, Ventura SPM, Roy K, Popelier PLA (2016) Development of predictive QSAR models for Vibrio fischeri toxicity of ionic liquids and their true external and experimental validation tests. Toxicol Res 5:1388–1399

    Article  CAS  Google Scholar 

  44. Das RN, Roy K, Popelier PLA (2015) Interspecies quantitative structure-toxicity-toxicity (QSTTR) relationship modeling of ionic liquids. Toxicity of ionic liquids to V. fischeri, D. magna and S. vacuolatus. Ecotoxicol Environ Saf 122:497–520

    Article  CAS  PubMed  Google Scholar 

  45. Bubalo MC, Radošević K, Srček VG, Das RN, Popelier P, Roy K (2015) Cytotoxicity towards CCO cells of imidazolium ionic liquids with functionalized side chains: preliminary QSTR modeling using regression and classification based approaches. Ecotoxicol Environ Saf 112:22–28

    Article  PubMed  CAS  Google Scholar 

  46. Toropova AP, Toropov AA, Veselinović AM, Veselinović JB, Benfenati E, Leszczynska D, Leszczynski J (2016) Nano-QSAR: model of mutagenicity of fullerene as a mathematical function of different conditions. Ecotoxicol Environ Saf 124:32–36

    Article  CAS  PubMed  Google Scholar 

  47. Basant N, Gupta S (2017) Multi-target QSTR modeling for simultaneous prediction of multiple toxicity endpoints of nano-metal oxides. Nanotoxicology 11:339–350

    Article  CAS  PubMed  Google Scholar 

  48. Pan Y, Li T, Cheng J, Telesca D, Zink JI, Jiang J (2016) Nano-QSAR modeling for predicting the cytotoxicity of metal oxide nanoparticles using novel descriptors. RSC Adv 6:25766–25775

    Article  CAS  Google Scholar 

  49. Raghav M, Eden S, Mitchell K, Witte B (2013) Contaminants of emerging concern in water. Water Resources Research Center College of Agriculture and Life Sciences, Arizona

    Google Scholar 

  50. Kar S, Roy K, Leszczynski J (2018) Impact of pharmaceuticals on the environment: risk assessment using QSAR modeling approach. In: Computational toxicology. Springer, New York, pp 395–443

    Chapter  Google Scholar 

  51. Kar S, Sepðlveda MS, Roy K, Leszczynski J (2017) Endocrine-disrupting activity of per-and polyfluoroalkyl substances: exploring combined approaches of ligand and structure based modeling. Chemosphere 184:514–523

    Article  CAS  PubMed  Google Scholar 

  52. Gramatica P, Cassani S, Sangion A (2016) Aquatic ecotoxicity of personal care products: QSAR models and ranking for prioritization and safer alternatives design. Green Chem 18:4393–4406

    Article  CAS  Google Scholar 

  53. Sangion A, Gramatica P (2016) Ecotoxicity interspecies QAAR models from Daphnia toxicity of pharmaceuticals and personal care products. SAR QSAR Environ Res 27:781–798

    Article  CAS  PubMed  Google Scholar 

  54. Kar S, Das RN, Roy K, Leszczynski J (2016) Can toxicity for different species be correlated?: the concept and emerging applications of interspecies quantitative structure-toxicity relationship (i-QSTR) modeling, (IJQSPR) 1:23–51

    Article  Google Scholar 

  55. Hossain KA, Roy K (2018) Chemometric modeling of aquatic toxicity of contaminants of emerging concern (CECs) in Dugesia japonica and its interspecies correlation with daphnia and fish: QSTR and QSTTR approaches. Ecotoxicol Environ Saf 166:92–101

    Article  CAS  PubMed  Google Scholar 

  56. Khan K, Roy K, Benfenati E (2019) Ecotoxicological QSAR modeling of endocrine disruptor chemicals. J Hazard Mater 369:707–718

    Article  CAS  PubMed  Google Scholar 

  57. Nel A, Xia T, Meng H, Wang X, Lin S, Ji Z, Zhang H (2012) Nanomaterial toxicity testing in the 21st century: use of a predictive toxicological approach and high-throughput screening. Acc Chem Res 46:607–621

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Cockburn A, Bradford R, Buck N, Constable A, Edwards G, Haber B, Hepburn P, Howlett J, Kampers F, Klein C (2012) Approaches to the safety assessment of engineered nanomaterials (ENM) in food. Food Chem Toxicol 50:2224–2242

    Article  CAS  PubMed  Google Scholar 

  59. Sellers K, Deleebeeck NM, Messiean M, Jackson M, Bleeker EAJ, Sijm D, Van Broekhuizen F (2015) Grouping nanomaterials: a strategy towards grouping and read-across, Rijksinstituut voor Volksgezondheid en Milieu RIVM

    Google Scholar 

  60. Lamon L, Asturiol D, Richarz A, Joossens E, Graepel R, Aschberger K, Worth A (2018) Grouping of nanomaterials to read-across hazard endpoints: from data collection to assessment of the grouping hypothesis by application of chemoinformatic techniques. Part Fibre Toxicol 15:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sizochenko N, Mikolajczyk A, Karolina J, Puzyn T, Leszczynski J, Rasulev B (2018) How the toxicity of nanomaterials towards different species could be simultaneously evaluated: a novel multi-nano-read-across approach. Nanoscale 10:582–591

    Article  CAS  PubMed  Google Scholar 

  62. George S, Tian X, Robert R, Yan Z, Zhaoxia J, Sijie L, Xiang W (2011) Use of a high-throughput screening approach coupled with in vivo zebrafish embryo screening to develop hazard ranking for engineered nanomaterials. ACS Nano 5:1805–1817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

KK thanks the Indian Council of Medical Research, New Delhi, for financial support in the form of a senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kunal Roy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Aher, R.B., Khan, K., Roy, K. (2020). A Brief Introduction to Quantitative Structure-Activity Relationships as Useful Tools in Predictive Ecotoxicology. In: Roy, K. (eds) Ecotoxicological QSARs. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0150-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0150-1_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0149-5

  • Online ISBN: 978-1-0716-0150-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics