Skip to main content

Early Prediction of Ecotoxicological Side Effects of Pharmaceutical Impurities Based on Open-Source Non-testing Approaches

  • Protocol
  • First Online:
Ecotoxicological QSARs

Abstract

Despite the increasing efforts to limit waste and avoid environmental contaminants, a large number of compounds using in the pharmaceutical field may have an ecotoxicological impact. Nevertheless, a complete overview of all possible ecotoxicological effects of pharmaceuticals is missing: that is especially true for chemical impurities. The lacking information regarding environmental behavior of impurities could be faced by computational techniques: the ability to predict the unknown toxicity of a compound can reduce uncertainties regarding possible negative effects on the environment of pharmaceutical impurities. In the current scenario, non-testing methods may answer to the requirement of assessing the ecotoxicological impact of chemicals in a more affordable way. For this purpose, in the first part of the review, definition and classification of chemical impurities are proposed, while in the second part, a description of four open-source computational tools (T.E.S.T., VEGA, LAZAR, and QSAR Toolbox) is provided after a brief survey of the computational methods. The paper also shows the advantages of combining individual test methods in order to increase confidence in the predictive results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sheldon RA (Delft U of T (Netherlands)) (1994) Consider the environmental quotient. CHEMTECH U S 24:3

    Google Scholar 

  2. Sheldon RA (2005) Green solvents for sustainable organic synthesis: state of the art. Green Chem 7:267–278. https://doi.org/10.1039/B418069K

    Article  CAS  Google Scholar 

  3. Halling-Sørensen B, Nors Nielsen S, Lanzky PF et al (1998) Occurrence, fate and effects of pharmaceutical substances in the environment- a review. Chemosphere 36:357–393. https://doi.org/10.1016/S0045-6535(97)00354-8

    Article  PubMed  Google Scholar 

  4. Dietrich DR, Webb SF, Petry T (2002) Hot spot pollutants: pharmaceuticals in the environment. Toxicol Lett 131:1–3. https://doi.org/10.1016/S0378-4274(02)00062-0

    Article  CAS  PubMed  Google Scholar 

  5. Kot-Wasik A, Jakimska A, Śliwka-Kaszyńska M (2016) Occurrence and seasonal variations of 25 pharmaceutical residues in wastewater and drinking water treatment plants. Environ Monit Assess 188. https://doi.org/10.1007/s10661-016-5637-0

  6. Ying G-G, Zhao J-L, Zhou L-J, Liu S (2013) Fate and occurrence of pharmaceuticals in the aquatic environment (surface water and sediment). In: Comprehensive Analytical Chemistry. Elsevier, pp 453–557

    Google Scholar 

  7. Ferrari B, Paxéus N, Giudice RL et al (2003) Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicol Environ Saf 55:359–370. https://doi.org/10.1016/S0147-6513(02)00082-9

    Article  CAS  PubMed  Google Scholar 

  8. Barra Caracciolo A, Topp E, Grenni P (2015) Pharmaceuticals in the environment: biodegradation and effects on natural microbial communities. Rev J Pharm Biomed Anal 106:25–36. https://doi.org/10.1016/j.jpba.2014.11.040

    Article  CAS  Google Scholar 

  9. aus der Beek T, Weber F-A, Bergmann A et al (2016) Pharmaceuticals in the environment-global occurrences and perspectives: pharmaceuticals in the global environment. Environ Toxicol Chem 35:823–835. https://doi.org/10.1002/etc.3339

    Article  CAS  Google Scholar 

  10. Henschel K-P, Wenzel A, Diedrich M, Fliedner A (1997) Environmental hazard assessment of pharmaceuticals. Regul Toxicol Pharmacol 25:220–225. https://doi.org/10.1006/rtph.1997.1102

    Article  CAS  PubMed  Google Scholar 

  11. Cleuvers M (2003) Aquatic ecotoxicity of pharmaceuticals including the assessment of combination effects. Toxicol Lett 142:185–194. https://doi.org/10.1016/S0378-4274(03)00068-7

    Article  CAS  PubMed  Google Scholar 

  12. Chatzitakis A, Berberidou C, Paspaltsis I et al (2008) Photocatalytic degradation and drug activity reduction of chloramphenicol. Water Res 42:386–394. https://doi.org/10.1016/j.watres.2007.07.030

    Article  CAS  PubMed  Google Scholar 

  13. Méndez-Arriaga F, Esplugas S, Giménez J (2008) Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Res 42:585–594. https://doi.org/10.1016/j.watres.2007.08.002

    Article  CAS  PubMed  Google Scholar 

  14. Hughes Mike, Health JBS of P. The principles of humane experimental technique: preface. In: Johns Hopkins Bloom. Sch. Public Health. http://altweb.jhsph.edu/pubs/books/humane_exp/addendum. Accessed 28 May 2019

  15. Abraham J (2009) International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. In: Brouder A, Tietje C (eds) Handbook of transnational economic governance regimes. Brill, pp 1041–1054

    Google Scholar 

  16. Prat D, Pardigon O, Flemming H-W et al (2013) Sanofi’s solvent selection guide: a step toward more sustainable processes. Org Process Res Dev 17:1517–1525. https://doi.org/10.1021/op4002565

    Article  CAS  Google Scholar 

  17. Fontaine N, Reynders D (2001) Directive 2001/83/EC of the European Parliament and of the Council of 6 November 2001 on the community code relating to medicinal products for human use. Off J Eur Commun L 311:67–128

    Google Scholar 

  18. Convention USP (2009) USP NF 2009. United States Pharmacopeial Convention. https://www.uspnf.com/sites/default/files/usp_pdf/EN/USPNF/usp-nf-notices/usp38_nf33_gn.pdf

  19. Alsante KM, et al (2001) Isolation and identification of process related impurities and degradation products from pharmaceutical drug candidates, Part I. Am Pharm Rev 4:70–78

    Google Scholar 

  20. Mangiatordi GF, Alberga D, Altomare CD et al (2016) Mind the gap! A journey towards computational toxicology. Mol Inform 35:294–308. https://doi.org/10.1002/minf.201501017

    Article  CAS  PubMed  Google Scholar 

  21. Nicolotti O, Benfenati E, Carotti A et al (2014) REACH and in silico methods: an attractive opportunity for medicinal chemists. Drug Discov Today 19:1757–1768. https://doi.org/10.1016/j.drudis.2014.06.027

    Article  CAS  PubMed  Google Scholar 

  22. Gissi A, Mangiatordi GF, Sobański T et al (2017) Nontest methods for REACH legislation. In: Comprehensive medicinal chemistry III. Elsevier, pp 472–490

    Google Scholar 

  23. Todeschini R, Consonni V (2008) Handbook of molecular descriptors. John Wiley & Sons, Weinheim/New York

    Google Scholar 

  24. McKinney JD, Richard A, Waller C et al (2000) The practice of structure activity relationships (SAR) in toxicology. Toxicol Sci 56:8–17. https://doi.org/10.1093/toxsci/56.1.8

    Article  CAS  PubMed  Google Scholar 

  25. Cronin Mark TD, Jaworska Joanna S, Walker John D et al (2003) Use of QSARs in international decision-making frameworks to predict health effects of chemical substances. Environ Health Perspect 111:1391–1401. https://doi.org/10.1289/ehp.5760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cronin Mark TD, Walker John D, Jaworska Joanna S et al (2003) Use of QSARs in international decision-making frameworks to predict ecologic effects and environmental fate of chemical substances. Environ Health Perspect 111:1376–1390. https://doi.org/10.1289/ehp.5759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gissi A, Nicolotti O, Carotti A et al (2013) Integration of QSAR models for bioconcentration suitable for REACH. Sci Total Environ 456–457:325–332. https://doi.org/10.1016/j.scitotenv.2013.03.104

    Article  CAS  PubMed  Google Scholar 

  28. Gissi A, Lombardo A, Roncaglioni A et al (2015) Evaluation and comparison of benchmark QSAR models to predict a relevant REACH endpoint: the bioconcentration factor (BCF). Environ Res 137:398–409. https://doi.org/10.1016/j.envres.2014.12.019

    Article  CAS  PubMed  Google Scholar 

  29. Gissi A, Gadaleta D, Floris M et al (2014) An alternative QSAR-based approach for predicting the bioconcentration factor for regulatory purposes. ALTEX - Altern Anim Exp 31:23–36. https://doi.org/10.14573/altex.1305221

    Article  Google Scholar 

  30. Dearden JC, Barratt MD, Benigni R, et al (1997) The development and validation of expert systems for predicting toxicity: the report and recommendations of an ECVAM/ECB workshop (ECVAM Workshop 24)

    Google Scholar 

  31. Ashby J, Tennant RW (1988) Chemical structure, Salmonella mutagenicity and extent of carcinogenicity as indicators of genotoxic carcinogenesis among 222 chemicals tested in rodents by the U.S. NCI/NTP. Mutat Res Toxicol 204:17–115. https://doi.org/10.1016/0165-1218(88)90114-0

    Article  CAS  Google Scholar 

  32. Mentzas G (1994) A functional taxonomy of computer-based information systems. Int J Inf Manag 14:397–410. https://doi.org/10.1016/0268-4012(94)90015-9

    Article  Google Scholar 

  33. Benfenati E (2016) In Silico methods for predicting drug toxicity. Springer New York, New York

    Book  Google Scholar 

  34. Pizzo F, Gadaleta D, Lombardo A et al (2015) Identification of structural alerts for liver and kidney toxicity using repeated dose toxicity data. Chem Cent J 9:62. https://doi.org/10.1186/s13065-015-0139-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dobo KL, Greene N, Cyr MO et al (2006) The application of structure-based assessment to support safety and chemistry diligence to manage genotoxic impurities in active pharmaceutical ingredients during drug development. Regul Toxicol Pharmacol 44:282–293. https://doi.org/10.1016/j.yrtph.2006.01.004

    Article  CAS  PubMed  Google Scholar 

  36. Floris M, Manganaro A, Nicolotti O et al (2014) A generalizable definition of chemical similarity for read-across. J ChemInform 6:39. https://doi.org/10.1186/s13321-014-0039-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Willett P, Barnard JM, Downs GM (1998) Chemical Similarity Searching. J Chem Inf Comput Sci 38:983–996. https://doi.org/10.1021/ci9800211

    Article  CAS  Google Scholar 

  38. Blackburn K, Stuard SB (2014) A framework to facilitate consistent characterization of read across uncertainty. Regul Toxicol Pharmacol 68:353–362. https://doi.org/10.1016/j.yrtph.2014.01.004

    Article  PubMed  Google Scholar 

  39. Patlewicz G, Ball N, Booth ED et al (2013) Use of category approaches, read-across and (Q)SAR: general considerations. Regul Toxicol Pharmacol 67:1–12. https://doi.org/10.1016/j.yrtph.2013.06.002

    Article  PubMed  Google Scholar 

  40. Wu S, Blackburn K, Amburgey J et al (2010) A framework for using structural, reactivity, metabolic and physicochemical similarity to evaluate the suitability of analogs for SAR-based toxicological assessments. Regul Toxicol Pharmacol 56:67–81. https://doi.org/10.1016/j.yrtph.2009.09.006

    Article  CAS  PubMed  Google Scholar 

  41. OECD (2017) Guidance on grouping of chemicals, Second edition. OECD, Paris

    Book  Google Scholar 

  42. European Chemicals Agency (2017) Guidance on information requirements and chemical safety assessment chapter R.7b: endpoint specific guidance

    Google Scholar 

  43. Baldi P, Brunak S, Bach F (2001) Bioinformatics: the machine learning approach. MIT press

    Google Scholar 

  44. Lavecchia A (2015) Machine-learning approaches in drug discovery: methods and applications. Drug Discov Today 20:318–331. https://doi.org/10.1016/j.drudis.2014.10.012

    Article  PubMed  Google Scholar 

  45. Marchant CA (2012) Computational toxicology: a tool for all industries: computational toxicology. Wiley Interdiscip Rev Comput Mol Sci 2:424–434. https://doi.org/10.1002/wcms.100

    Article  CAS  Google Scholar 

  46. Michie D (1968) “Memo” functions and machine learning. Nature 218.5136:19

    Article  Google Scholar 

  47. Trisciuzzi D, Alberga D, Mansouri K et al (2015) Docking-based classification models for exploratory toxicology studies on high-quality estrogenic experimental data. Future Med Chem 7:1921–1936. https://doi.org/10.4155/fmc.15.103

    Article  CAS  PubMed  Google Scholar 

  48. Trisciuzzi D, Alberga D, Mansouri K et al (2017) Predictive structure-based toxicology approaches to assess the androgenic potential of chemicals. J Chem Inf Model 57:2874–2884. https://doi.org/10.1021/acs.jcim.7b00420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kamel M, Ahmed A, Aleksandra R et al (2016) CERAPP: collaborative estrogen receptor activity prediction project. Environ Health Perspect 124:1023–1033. https://doi.org/10.1289/ehp.1510267

    Article  CAS  Google Scholar 

  50. Trisciuzzi D, Alberga D, Leonetti F et al (2018) Molecular docking for predictive toxicology. In: Nicolotti O (ed) Computational toxicology. Springer New York, New York, pp 181–197

    Chapter  Google Scholar 

  51. Martin TM, Harten P, Venkatapathy R et al (2008) A hierarchical clustering methodology for the estimation of toxicity. Toxicol Mech Methods 18:251–266. https://doi.org/10.1080/15376510701857353

    Article  CAS  PubMed  Google Scholar 

  52. US EPA O (2015) Ecotoxicology database. In: US EPA. https://www.epa.gov/chemical-research/ecotoxicology-database. Accessed 29 May 2019

  53. Dimitrov S, Dimitrova N, Parkerton T et al (2005) Base-line model for identifying the bioaccumulation potential of chemicals. SAR QSAR Environ Res 16:531–554. https://doi.org/10.1080/10659360500474623

    Article  CAS  PubMed  Google Scholar 

  54. A review of bioconcentration factor (BCF) and bioaccumulation factor (BAF) assessments for organic chemicals in aquatic organisms - Environmental Reviews. https://www.nrcresearchpress.com/doi/abs/10.1139/a06-005#.XO5Rq4gzbIU. Accessed 29 May 2019

  55. Zhao C, Boriani E, Chana A et al (2008) A new hybrid system of QSAR models for predicting bioconcentration factors (BCF). Chemosphere 73:1701–1707. https://doi.org/10.1016/j.chemosphere.2008.09.033

    Article  CAS  PubMed  Google Scholar 

  56. Benfenati E (2010) The CAESAR project for in silico models for the REACH legislation. Chem Cent J 4:I1. https://doi.org/10.1186/1752-153X-4-S1-I1

    Article  PubMed  PubMed Central  Google Scholar 

  57. Commission E (2006) Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December 2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH), establishing a European Chemicals Agency, amending Directive 1999/45/EC and repealing Council Regulation (EEC) No 793/93 and Commission Regulation (EC) No 1488/94 as well as Council Directive 76/769/EEC and Commission Directives 91/155/EEC, 93/67/EEC, 93/105/EC and 2000/21/EC. Off J 3961 30122006

    Google Scholar 

  58. Williams ES, Panko J, Paustenbach DJ (2009) The European Union’s REACH regulation: a review of its history and requirements. Crit Rev Toxicol 39:553–575. https://doi.org/10.1080/10408440903036056

    Article  PubMed  Google Scholar 

  59. Golbamaki A, Cassano A, Lombardo A et al (2014) Comparison of in silico models for prediction of Daphnia magna acute toxicity. SAR QSAR Environ Res 25:673–694. https://doi.org/10.1080/1062936X.2014.923041

    Article  CAS  PubMed  Google Scholar 

  60. Yordanova D, Schultz TW, Kuseva C et al (2019) Automated and standardized workflows in the OECD QSAR toolbox. Comput Toxicol 10:89–104. https://doi.org/10.1016/j.comtox.2019.01.006

    Article  Google Scholar 

  61. Enoch S j. (2010) Chemical category formation and read-across for the prediction of toxicity. In: Puzyn T, Leszczynski J, Cronin MT (eds) Recent advances in QSAR studies. Springer Netherlands, Dordrecht, pp 209–219

    Chapter  Google Scholar 

  62. Devillers J (2013) Methods for building QSARs. In: Reisfeld B, Mayeno AN (eds) Computational toxicology: Volume II. Humana Press, Totowa, pp 3–27

    Chapter  Google Scholar 

  63. Klimisch H-J, Andreae M, Tillmann U (1997) A systematic approach for evaluating the quality of experimental toxicological and ecotoxicological data. Regul Toxicol Pharmacol 25:1–5. https://doi.org/10.1006/rtph.1996.1076

    Article  CAS  PubMed  Google Scholar 

  64. Gadaleta D, Mangiatordi GF, Catto M et al (2016) Applicability domain for QSAR models: where theory meets reality. Int J Quant Struct-Prop Relatsh IJQSPR 1:45–63. https://doi.org/10.4018/IJQSPR.2016010102

    Article  Google Scholar 

  65. Walker J, Carlsen L, Jaworska J (2003) Improving opportunities for regulatory acceptance of QSARs: the importance of model domain, uncertainty, validity and predictability. QSAR Comb Sci 22:346–350. https://doi.org/10.1002/qsar.200390024

    Article  CAS  Google Scholar 

  66. Russom CL, Breton RL, Walker JD, Bradbury SP (2003) An overview of the use of quantitative structure–activity relationships for ranking and prioritizing large chemical inventories for environmental risk assessments. Environ Toxicol Chem 22:1810. https://doi.org/10.1897/01-194

    Article  CAS  PubMed  Google Scholar 

  67. Eriksson L, Jaworska J, Worth AP et al (2003) Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environ Health Perspect 111:1361–1375. https://doi.org/10.1289/ehp.5758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Roncaglioni A, Toropov AA, Toropova AP, Benfenati E (2013) In silico methods to predict drug toxicity. Curr Opin Pharmacol 13:802–806. https://doi.org/10.1016/j.coph.2013.06.001

    Article  CAS  PubMed  Google Scholar 

  69. Helma C (2005) Predictive toxicology. CRC Press, Boca Raton, Florida, USA

    Google Scholar 

  70. Judson R (2010) Public databases supporting computational toxicology. J Toxicol Environ Health Part B 13:218–231. https://doi.org/10.1080/10937404.2010.483937

    Article  CAS  Google Scholar 

  71. Atkins D (2003) Revolutionizing science and engineering through cyberinfrastructure: report of the National Science Foundation Blue-Ribbon Advisory Panel on Cyberinfrastructure

    Google Scholar 

  72. Judson PN, Cooke PA, Doerrer NG et al (2005) Towards the creation of an international toxicology information Centre. Toxicology 213:117–128. https://doi.org/10.1016/j.tox.2005.05.014

    Article  CAS  PubMed  Google Scholar 

  73. Heidorn CJA, Rasmussen K, Hansen BG et al (2003) IUCLID: an information management tool for existing chemicals and biocides. J Chem Inf Comput Sci 43:779–786. https://doi.org/10.1021/ci0202786

    Article  CAS  PubMed  Google Scholar 

  74. Louis KS, Jones LM, Campbell EG (2002) Macroscope: sharing in science. Am Sci 90:304–307

    Article  Google Scholar 

  75. Hilgartner S, Brandt-Rauf SI (1994) Data access, ownership, and control: toward empirical studies of access practices. Knowledge 15:355–372. https://doi.org/10.1177/107554709401500401

    Article  Google Scholar 

  76. Staples CA, Woodburn K, Caspers N et al (2002) A weight of evidence approach to the aquatic hazard assessment of bisphenoi A. Hum Ecol Risk Assess Int J 8:1083–1105. https://doi.org/10.1080/1080-700291905837

    Article  Google Scholar 

  77. Benedetti M, Ciaprini F, Piva F et al (2012) A multidisciplinary weight of evidence approach for classifying polluted sediments: integrating sediment chemistry, bioavailability, biomarkers responses and bioassays. Environ Int 38:17–28. https://doi.org/10.1016/j.envint.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  78. Piva F, Ciaprini F, Onorati F et al (2011) Assessing sediment hazard through a weight of evidence approach with bioindicator organisms: a practical model to elaborate data from sediment chemistry, bioavailability, biomarkers and ecotoxicological bioassays. Chemosphere 83:475–485. https://doi.org/10.1016/j.chemosphere.2010.12.064

    Article  CAS  PubMed  Google Scholar 

  79. Hartung T (2009) Food for thought … on in silico methods in toxicology. ALTEX 26:155–166. https://doi.org/10.14573/altex.2009.3.155

    Article  PubMed  Google Scholar 

  80. Bunn DW (1988) Combining forecasts. Eur J Oper Res 33:223–229. https://doi.org/10.1016/0377-2217(88)90165-8

    Article  Google Scholar 

  81. Clemen RT (1989) Combining forecasts: a review and annotated bibliography. Int J Forecast 5:559–583. https://doi.org/10.1016/0169-2070(89)90012-5

    Article  Google Scholar 

  82. The Combination of Forecasts: Journal of the Operational Research Society: Vol 20, No 4. https://www.tandfonline.com/doi/abs/10.1057/jors.1969.103. Accessed 29 May 2019

  83. Hewitt M, Cronin MTD, Madden JC et al (2007) Consensus QSAR models: do the benefits outweigh the complexity? J Chem Inf Model 47:1460–1468. https://doi.org/10.1021/ci700016d

    Article  CAS  PubMed  Google Scholar 

  84. Votano JR, Parham M, Hall LH et al (2004) Three new consensus QSAR models for the prediction of Ames genotoxicity. Mutagenesis 19:365–377. https://doi.org/10.1093/mutage/geh043

    Article  CAS  PubMed  Google Scholar 

  85. Lewis DF, Bird MG, Jacobs MN (2002) Human carcinogens: an evaluation study via the COMPACT and HazardExpert procedures. Hum Exp Toxicol 21:115–122. https://doi.org/10.1191/0960327102ht233oa

    Article  CAS  Google Scholar 

  86. Research C for DE and (2019) M7(R1) assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk. In: US Food Drug Adm. http://www.fda.gov/regulatory-information/search-fda-guidance-documents/m7r1-assessment-and-control-dna-reactive-mutagenic-impurities-pharmaceuticals-limit-potential. Accessed 29 May 2019

  87. Müller L, Mauthe RJ, Riley CM et al (2006) A rationale for determining, testing, and controlling specific impurities in pharmaceuticals that possess potential for genotoxicity. Regul Toxicol Pharmacol 44:198–211. https://doi.org/10.1016/j.yrtph.2005.12.001

    Article  CAS  PubMed  Google Scholar 

  88. Sutter A, Amberg A, Boyer S et al (2013) Use of in silico systems and expert knowledge for structure-based assessment of potentially mutagenic impurities. Regul Toxicol Pharmacol 67:39–52. https://doi.org/10.1016/j.yrtph.2013.05.001

    Article  CAS  PubMed  Google Scholar 

  89. Mattingly Carolyn J, Colby Glenn T, Forrest John N, Boyer James L (2003) The comparative toxicogenomics database (CTD). Environ Health Perspect 111:793–795. https://doi.org/10.1289/ehp.6028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Pence HE, Williams A (2010) ChemSpider: an online chemical information resource. J Chem Educ 87:1123–1124. https://doi.org/10.1021/ed100697w

    Article  CAS  Google Scholar 

  91. Gaulton A, Bellis LJ, Bento AP et al (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40:D1100–D1107. https://doi.org/10.1093/nar/gkr777

    Article  CAS  PubMed  Google Scholar 

  92. Richard AM, Williams CR (2002) Distributed structure-searchable toxicity (DSSTox) public database network: a proposal. Mutat Res Mol Mech Mutagen 499:27–52. https://doi.org/10.1016/S0027-5107(01)00289-5

    Article  CAS  Google Scholar 

Download references

Dedication

To the memory of Michele Montaruli, exceptionally gifted PhD student who has always devoted his life to serving others. To you, Michele, our huge embrace.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Orazio Nicolotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tondo, A.R., Montaruli, M., Mangiatordi, G.F., Nicolotti, O. (2020). Early Prediction of Ecotoxicological Side Effects of Pharmaceutical Impurities Based on Open-Source Non-testing Approaches. In: Roy, K. (eds) Ecotoxicological QSARs. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0150-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0150-1_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0149-5

  • Online ISBN: 978-1-0716-0150-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics