Skip to main content

CAR-T Cell Expansion in a Xuri Cell Expansion System W25

  • Protocol
  • First Online:
Chimeric Antigen Receptor T Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2086))

Abstract

Cell expansion is typically a long and labor-intensive step in CAR-T cell manufacture. The Xuri Cell Expansion System (CES) W25 semiautomates this step while functionally closing the process. Cells for autologous or allogeneic cell therapies are cultured inside a single-use Xuri Cellbag™ bioreactor. Wave-induced agitation, performed by a rocking Base Unit, transfers gas and mixes the culture. The integral UNICORN™ software allows customization of culture conditions and media perfusion schedules. Culture volumes can range from 300 mL to 25 L, making the Xuri CES W25 system suitable for both scale-up and scale-out manufacturing processes. CAR-T cell therapies have been successfully generated using the Xuri CES W25 system, which reduces manual labor compared with static culturing methods. This chapter details how to initiate a culture, install the Xuri CES W25, and install a 2 L Cellbag bioreactor. Protocols on inoculation, monitoring, and sampling are also outlined in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vormittag P, Gunn R, Ghorashian S, Veraitch F (2018) A guide to manufacturing CAR T cell therapies. Curr Opin Biotechnol 53:164–181

    Article  CAS  Google Scholar 

  2. Janas ML, Nunes C, Marenghi A, Sauvage V, Davis B, Bajas A, Burns A (2015) Perfusion’s role in maintenance of high-density T-cell cultures. Bioprocess Int 13(1):18–26

    CAS  Google Scholar 

  3. Areman EM, Loper K (2009) Cellular therapy: principles, methods, and regulations. AABB Press, Bethesda

    Google Scholar 

  4. Hollyman D, Stefanski J, Przbylowski M, Bartido S, Borquez-Ojeda O, Taylor C et al (2009) Manufacturing validation of biologically functional T cells targeted to CD19. J Immunother 32(2):169–180

    Article  CAS  Google Scholar 

  5. Sadeghi A, Pauler L, Anneré C, Friberg A, Brandhorst D, Korsgren O, Totterman TH (2011) Large-scale bioreactor expansion of tumor-infiltrating lymphocytes. J Immunol Methods 364:94–100

    Article  CAS  Google Scholar 

  6. Healthcare GE (2018) A semi-automated, high-purity process for NK cell manufacturing in a rocking bioreactor. (KA4771180618PO). General Electric, Boston, MA

    Google Scholar 

  7. Davis BM, Loghin ER, Conway KR, Zhang X (2018) Automated closed-system expansion of pluripotent stem cell aggregates in a rocking-motion bioreactor. SLAS Technol 23(4):364–373. https://doi.org/10.1177/2472630318760745

    Article  CAS  PubMed  Google Scholar 

  8. Kokaji AI, Sun CA, Ng V, Lam BS, Clark SJ, Woodside SM, Eaves AC, Thomas TE (2016) Scalable human T cell isolation, activation and expansion using EasySep™ and ImmunoCult™ by STEMCELL Technologies. Eur J Immunol 46(Suppl 1):119–120

    Google Scholar 

  9. Brentjens RJ et al (2011) Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 118(18):4817–4828

    Article  CAS  Google Scholar 

  10. Iyer RK, Bowles PA, Howard K, Dulgar-Tulloch A (2018) Industrializing autologous adoptive immunotherapies: manufacturing advances and challenges. Front Med 5(150):1–9

    Google Scholar 

  11. GE Healthcare (2016) T cell expansion with Xuri™ systems: isolation and cultivation protocol (document number 29112375 revision AB). General Electric, Boston, MA

    Google Scholar 

  12. Golubovskaya V, Wu L (2016) Different subsets of T cells, memory, effector functions, and CAR-T immunotherapy. Cancers (Basel) 8(3):36

    Article  CAS  Google Scholar 

  13. Xu W, Larbi A (2017) Markers of T cell senescence in humans. Int J Mol Sci 18(8):1742

    Article  Google Scholar 

  14. Ismail R, Janas M, Stone S, Marenghi A, Sauvage V (2013) Expansion of T-cells using the Xuri™ cell expansion W25 and WAVE bioreactor™ 2/10 system. In: Developments in cell expansion for cell processing. GE Healthcare Life Sciences, Chicago, Illinois. https://www.gelifesciences.com/solutions/cell-therapy/knowledge-center/resources/developments-in-cell-expansion. Accessed 22 May 2018

    Google Scholar 

  15. Gee AP (2018) GMP CAR-T cell production. Best Pract Res Clin Haematol 31(2):126–134

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks Matt Sherman, PE for providing the 2 L Cellbag bioreactor line drawing in Fig. 2, the Cellular Biology team at the GE Global Research Center for their continued mentorship, and the Centre for Commercialization of Regenerative Medicine for their persistence in expanding the applications of the Xuri Cell Expansion System W25.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trevor A. Smith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Smith, T.A. (2020). CAR-T Cell Expansion in a Xuri Cell Expansion System W25. In: Swiech, K., Malmegrim, K., Picanço-Castro, V. (eds) Chimeric Antigen Receptor T Cells. Methods in Molecular Biology, vol 2086. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0146-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0146-4_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0145-7

  • Online ISBN: 978-1-0716-0146-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics