Skip to main content

Quantitation of Cyclosporin A in Cell Culture Media by Differential Mobility Mass Spectrometry (DMS-MS/MS)

  • Protocol
  • First Online:
Ion Mobility-Mass Spectrometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2084))

Abstract

Cell permeability is an important factor in determining the bioavailability of therapeutics that is usually measured by cell culture testing. The concentration of pharmaceutical in a medium such as Hank’s Balanced Salt Solution with HEPES organic buffer (HBSS-HEPES) is measured at a series of time points, making simplicity and high throughput of the analytical method important characteristics. We report an electrospray differential mobility spectrometry mass spectrometry method (nanoESI-DMS-MS) for the rapid determination of cyclosporin A (CsA, cyclosporine) concentration in such a buffer. DMS technology provides gas phase atmospheric pressure ion filtration for small-molecule bioanalytical methods that suppresses interfering ions and reduces chemical noise, without the use of chromatography. This allows simplified sample preparation, fast calibration curve development, and shortened analysis times. It has also been noted that the DMS prefilter can reduce contamination of the mass spectrometer by salts, thereby extending mass spectrometer system uptime.

In the application described here, DMS-MS/MS is applied to cyclosporine A (CsA) in cell medium. Sample preparation is limited to dilution with an ammonium acetate-methanol-water mobile phase and the addition of CsA-d4 internal standard. The isotope ratio data are obtained in DMS-MS MRM mode observing NH3 loss from the ammonium adduct of the two species. A calibration curve with high linearity (R2 = 0.998) is rapidly obtained with nearly zero intercept, while it was found that a liquid chromatography LC-MS method required a preliminary SPE step to obtain a linear calibration curve. The time for data acquisition in the DMS-MS MRM method with flow injection (FIA) or infusion introduction at ESI flow of 400 nL/min is typically 30 s leading to a cycle time of less than 1 min.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Vera NB, Chen Z, Pannkuk E, Laiakis EC, Fornace AJ Jr, Erion DM, Coy SL, Pfefferkorn JA, Vouros P (2018) Differential mobility spectrometry (DMS) reveals the elevation of urinary acetylcarnitine in non-human primates (NHPs) exposed to radiation. J Mass Spectrom 53:548–559. https://doi.org/10.1002/jms.4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chen Z, Coy SL, Pannkuk EL, Laiakis EC, Fornace AJ Jr, Vouros P (2018) Differential mobility spectrometry-mass spectrometry (DMS-MS) in radiation biodosimetry: rapid and high-throughput quantitation of multiple radiation biomarkers in nonhuman primate urine. J Am Soc Mass Spectrom 29(8):1650–1664. https://doi.org/10.1007/s13361-018-1977-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kafle A, Klaene J, Hall AB, Glick J, Coy SL, Vouros P (2013) A differential mobility spectrometry/mass spectrometry platform for the rapid detection and quantitation of DNA adduct dG-ABP. Rapid Commun Mass Spectrom 27(13):1473–1480. https://doi.org/10.1002/rcm.6591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kafle A, Coy SL, Wong BM, Fornace AJ Jr, Glick JJ, Vouros P (2014) Understanding gas phase modifier interactions in rapid analysis by differential mobility-tandem mass spectrometry. J Am Soc Mass Spectrom 25(7):1098–1113. https://doi.org/10.1007/s13361-013-0808-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shvartsburg AA (2008) Differential ion mobility spectrometry: nonlinear ion transport and fundamentals of FAIMS. CRC Press, Boca Raton, FL. https://doi.org/10.1201/9781420051070

    Book  Google Scholar 

  6. Schneider BB, Nazarov EG, Londry F, Vouros P, Covey TR (2016) Differential mobility spectrometry/mass spectrometry history, theory, design optimization, simulations, and applications. Mass Spectrom Rev 35(6):687–737. https://doi.org/10.1002/mas.21453

    Article  CAS  PubMed  Google Scholar 

  7. Coy SL, Krylov EV, Schneider BB, Covey TR, Brenner DJ, Tyburski JB, Patterson AD, Krausz KW, Fornace AJ Jr, Nazarov EG (2010) Detection of radiation-exposure biomarkers by differential mobility prefiltered mass spectrometry (DMS-MS). Int J Mass Spectrom 291(3):108–117. https://doi.org/10.1016/j.ijms.2010.01.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Coy SL, Cheema AK, Tyburski JB, Laiakis EC, Collins SP, Fornace AJ (2011) Radiation metabolomics and its potential in biodosimetry. Int J Radiat Biol 87(8):802–823. https://doi.org/10.3109/09553002.2011.556177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Campbell JL, Yang AMC, Melo LR, Hopkins WS (2016) Studying gas-phase interconversion of tautomers using differential mobility spectrometry. J Am Soc Mass Spectrom 27(7):1277–1284. https://doi.org/10.1007/s13361-016-1392-2

    Article  CAS  PubMed  Google Scholar 

  10. van Breemen RB, Li Y (2005) Caco-2 cell permeability assays to measure drug absorption. Expert Opin Drug Metab Toxicol 1(2):175–185. https://doi.org/10.1517/17425255.1.2.175

    Article  PubMed  Google Scholar 

  11. Yee S (1997) In vitro permeability across Caco-2 cells (colonic) can predict in vivo (small intestinal) absorption in man—fact or myth. Pharm Res 14(6):763–766. https://doi.org/10.1023/a:1012102522787

    Article  CAS  PubMed  Google Scholar 

  12. Hidalgo IJ, Raub TJ, Borchardt RT (1989) Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96(3):736–749

    Article  CAS  PubMed  Google Scholar 

  13. Grès M-C, Julian B, Bourrié M, Meunier V, Roques C, Berger M, Boulenc X, Berger Y, Fabre G (1998) Correlation between oral drug absorption in humans, and apparent drug permeability in TC-7 cells, a human epithelial intestinal cell line: comparison with the parental Caco-2 cell line. Pharm Res 15(5):726–733. https://doi.org/10.1023/a:1011919003030

    Article  PubMed  Google Scholar 

  14. Covey TR, Thomson BA, Schneider BB (2009) Atmospheric pressure ion sources. Mass Spectrom Rev 28(6):870–897. https://doi.org/10.1002/mas.20246

    Article  CAS  PubMed  Google Scholar 

  15. Keevil BG, Tierney DP, Cooper DP, Morris MR (2002) Rapid liquid chromatography-tandem mass spectrometry method for routine analysis of cyclosporin A over an extended concentration range. Clin Chem 48(1):69–76

    CAS  PubMed  Google Scholar 

  16. Krylov EV, Coy SL, Vandermey J, Schneider BB, Covey T, Nazarov E (2010) Selection and generation of waveforms for differential mobility spectrometry. Rev Sci Instrum 81(2):024101. https://doi.org/10.1063/1.3284507

    Article  Google Scholar 

  17. Mason EA, McDaniel EW (1988) Transport properties of ions in gases. Wiley-Interscience, New York, NY. https://doi.org/10.1002/3527602852

    Book  Google Scholar 

Download references

Acknowledgements

Development of this method was supported by NIH: RO1 CA 069390-16 (Paul Vouros, PI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen L. Coy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kafle, A., Glick, J., Coy, S.L., Vouros, P. (2020). Quantitation of Cyclosporin A in Cell Culture Media by Differential Mobility Mass Spectrometry (DMS-MS/MS). In: Paglia, G., Astarita, G. (eds) Ion Mobility-Mass Spectrometry . Methods in Molecular Biology, vol 2084. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0030-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0030-6_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0029-0

  • Online ISBN: 978-1-0716-0030-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics