Skip to main content

Drift-Tube Ion Mobility-Mass Spectrometry for Nontargeted ′Omics

  • Protocol
  • First Online:
Ion Mobility-Mass Spectrometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2084))

Abstract

This chapter describes the developments in drift-tube ion mobility-mass spectrometry (DTIM-MS) that have driven application development in ′omics analyses. Harnessing the additional, orthogonal separation that DTIM provides increased confidence in compound identifications as the mass spectral complexity can be reduced and mobility-derived parameters (most prominently the collision cross section, CCS) used to support identity confirmation goals for a variety of ′omics application areas. Presented within this contribution is a methodology for improving the transmission and maintaining accurate determination of drift time-derived CCS (DTCCS) for low molecular weight compounds for a typical nontargeted ′omics (metabolomics) workflow using liquid chromatography in combination with DTIM-MS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zeleny J (1898) VI. On the ratio of the velocities of the two ions produced in gases by Röntgen radiation; and on some related phenomena. Lond Edinb Dublin Phil Mag J Sci 46:120–154. https://doi.org/10.1080/14786449808621173

    Article  Google Scholar 

  2. McDaniel EW, Mason EA (1973) The mobility and diffusion of ions in gases. Wiley, Hoboken, NJ

    Google Scholar 

  3. Mason EA, McDaniel EW (1988) Transport properties of ions in gases. Wiley, Hoboken, NJ

    Book  Google Scholar 

  4. Cohen MJ, Karasek FW (1970) Plasma chromatography™—a new dimension for gas chromatography and mass spectrometry. J Chromatogr Sci 8:330–337. https://doi.org/10.1093/chromsci/8.6.330

    Article  CAS  Google Scholar 

  5. Bowers MT, Kemper PR, von Helden G, van Koppen PAM (1993) Gas-phase ion chromatography: transition metal state selection and carbon cluster formation. Science 260:1446–1451

    Article  CAS  PubMed  Google Scholar 

  6. von Helden G, Hsu MT, Gotts N, Bowers MT (1993) Carbon cluster cations with up to 84 atoms: structures, formation mechanism, and reactivity. J Phys Chem 97:8182–8192. https://doi.org/10.1021/j100133a011

    Article  Google Scholar 

  7. Guharay SK, Dwivedi P, Hill HH Jr (2008) Ion mobility spectrometry: Ion source development and applications in physical and biological sciences. IEEE Trans Plasma Sci 36:1458–1470. https://doi.org/10.1109/TPS.2008.927290

    Article  CAS  Google Scholar 

  8. Rus J, Moro D, Sillero JA, Royuela J, Casado A, Estevez-Molinero F, Fernández de la Mora J (2010) IMS–MS studies based on coupling a differential mobility analyzer (DMA) to commercial API–MS systems. Int J Mass Spectrom 298:30–40. https://doi.org/10.1016/j.ijms.2010.05.008

    Article  CAS  Google Scholar 

  9. Kanu AB, Dwivedi P, Tam M, Matz L, Hill HH Jr (2008) Ion mobility-mass spectrometry. J Mass Spectrom 43:1–22. https://doi.org/10.1002/jms.1383

    Article  CAS  PubMed  Google Scholar 

  10. May JC, McLean JA (2015) Ion mobility-mass spectrometry: time-dispersive instrumentation. Anal Chem 87:1422–1436. https://doi.org/10.1021/ac504720m

    Article  CAS  PubMed  Google Scholar 

  11. Ewing MA, Glover MS, Clemmer DE (2016) Hybrid ion mobility and mass spectrometry as a separation tool. J Chromatogr A 1439:3–25. https://doi.org/10.1016/j.chroma.2015.10.080

    Article  CAS  PubMed  Google Scholar 

  12. Gabelica V, Marklund E (2018) Fundamentals of ion mobility spectrometry. Curr Opin Chem Biol 42:51–59. https://doi.org/10.1016/j.cbpa.2017.10.022

    Article  CAS  PubMed  Google Scholar 

  13. Bradbury NE, Nielsen RA (1936) Absolute values of the electron mobility in hydrogen. Phys Rev 49:388–393. https://doi.org/10.1103/PhysRev.49.388

    Article  CAS  Google Scholar 

  14. Shaffer SA, Tang K, Anderson GA, Prior DC, Udseth HR, Smith RD (1997) A novel ion funnel for focusing ions at elevated pressure using electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 11:1813–1817. https://doi.org/10.1002/(SICI)1097-0231(19971030)11:16<1813::AID-RCM87>3.0.CO;2-D

    Article  CAS  Google Scholar 

  15. Tang K, Shvarisburg AA, Lee H-N, Prior DC, Buschbach MA, Li F, Tolmachev AV, Anderson GA, Smith RD (2005) High-sensitivity ion mobility spectrometry/mass spectrometry using electrodynamic ion funnel interfaces. Anal Chem 77:3330–3339. https://doi.org/10.1021/ac048315a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Page JS, Tolmachev AV, Tang K, Smith RD (2006) Theoretical and experimental evaluation of the low m/z transmission of an electrodynamic ion funnel. J Am Soc Mass Spectrom 17:586–592. https://doi.org/10.1016/j.jasms.2005.12.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Baker ES, Clowers BH, Li F, Tang K, Tolmachev AV, Prior DC, Belov ME, Smith RD (2007) Ion mobility spectrometry—mass spectrometry performance using electrodynamic ion funnels and elevated drift gas pressures. J Am Soc Mass Spectrom 18:1176–1187. https://doi.org/10.1016/j.jasms.2007.03.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Clowers BH, Ibrahim YM, Prior DC, Danielson WF, Belov ME, Smith RD (2008) Enhanced ion utilization efficiency using an electrodynamic ion funnel trap as an injection mechanism for ion mobility spectrometry. Anal Chem 80:612–623. https://doi.org/10.1021/ac701648p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Clowers BH, Siems WF, Hill HH, Massick SM (2006) Hadamard transform ion mobility spectrometry. Anal Chem 78:44–51. https://doi.org/10.1021/ac050615k

    Article  CAS  PubMed  Google Scholar 

  20. Mason EA, Schamp HW (1958) Mobility of gaseous ions in weak electric fields. Ann Phys 4:233–270. https://doi.org/10.1016/0003-4916(58)90049-6

    Article  CAS  Google Scholar 

  21. Valentine SJ, Plasencia MD, Liu X, Krishnan M, Naylor S, Udseth HR, Smith RD, Clemmer DE (2006) Toward plasma proteome profiling with ion mobility-mass spectrometry. J Proteome Res 5:2977–2984. https://doi.org/10.1021/pr060232i

    Article  CAS  PubMed  Google Scholar 

  22. Taraszka JA, Kurulugama R, Sowell RA, Valentine SJ, Koeniger SL, Arnold RJ, Miller DF, Kaufman TC, Clemmer DE (2005) Mapping the proteome of Drosophila melanogaster: analysis of embryos and adult heads by LC−IMS−MS methods. J Proteome Res 4:1223–1237. https://doi.org/10.1021/pr050038g

    Article  CAS  PubMed  Google Scholar 

  23. Kyle JE, Zhang X, Weitz KK, Monroe ME, Ibrahim YM, Moore RJ, Cha J, Sun X, Lovelace ES, Wagoner J, Polyak SJ, Metz TO, Dey SK, Smith RD, Burnum-Johnson KE, Baker ES (2016) Uncovering biologically significant lipid isomers with liquid chromatography, ion mobility spectrometry and mass spectrometry. Analyst 141:1649–1659. https://doi.org/10.1039/C5AN02062J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kyle JE, Casey CP, Stratton KG, Zink EM, Kim Y-M, Zheng X, Monroe ME, Weitz KK, Bloodsworth KJ, Orton DJ, Ibrahim YM, Moore RJ, Lee CG, Pedersen C, Orwoll E, Smith RD, Burnum-Johnson KE, Baker ES (2017) Comparing identified and statistically significant lipids and polar metabolites in 15-year old serum and dried blood spot samples for longitudinal studies. Rapid Commun Mass Spectrom 31:447–456. https://doi.org/10.1002/rcm.7808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Burnum-Johnson KE, Baker ES, Metz TO (2017) Characterizing the lipid and metabolite changes associated with placental function and pregnancy complications using ion mobility spectrometry-mass spectrometry and mass spectrometry imaging. Placenta. https://doi.org/10.1016/j.placenta.2017.03.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Groessl M, Graf S, Knochenmuss R (2015) High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids. Analyst 140:6904–6911. https://doi.org/10.1039/C5AN00838G

    Article  CAS  PubMed  Google Scholar 

  27. Fenn LS, McLean JA (2013) Structural separations by ion mobility-MS for glycomics and glycoproteomics. Methods Mol Biol 951:171–194. https://doi.org/10.1007/978-1-62703-146-2_12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Metz TO, Baker ES, Schymanski EL, Renslow RS, Thomas DG, Causon TJ, Webb IK, Hann S, Smith RD, Teeguarden J (2017) Integrating ion mobility spectrometry into MS-based exposome measurements: what can it add and how far can it go? Bioanalysis 9:81–98. https://doi.org/10.4155/bio-2016-0244

    Article  CAS  PubMed  Google Scholar 

  29. Zheng X, Dupuis KT, Aly NA, Zhou Y, Smith FB, Tang K, Smith RD, Baker ES (2018) Utilizing ion mobility spectrometry and mass spectrometry for the analysis of polycyclic aromatic hydrocarbons, polychlorinated biphenyls, polybrominated diphenyl ethers and their metabolites. Anal Chim Acta 1037:265–273. https://doi.org/10.1016/j.aca.2018.02.054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. T. Causon, V. Ivanova-Petropulos, D. Petrusheva, E. Bogeva, S. Hann, Fingerprinting of traditionally produced red wines using liquid chromatography combined with drift tube ion mobility-mass spectrometry, Anal Chim Acta (n.d.) in press

    Google Scholar 

  31. Mairinger T, Causon TJ, Hann S (2018) The potential of ion mobility–mass spectrometry for non-targeted metabolomics. Curr Opin Chem Biol 42:9–15. https://doi.org/10.1016/j.cbpa.2017.10.015

    Article  CAS  PubMed  Google Scholar 

  32. Zheng X, Aly NA, Zhou Y, Dupuis KT, Bilbao A, Paurus VL, Orton DJ, Wilson R, Payne SH, Smith RD, Baker ES (2017) A structural examination and collision cross section database for over 500 metabolites and xenobiotics using drift tube ion mobility spectrometry. Chem Sci 8:7724–7736. https://doi.org/10.1039/C7SC03464D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Stow SM, Causon TJ, Zheng X, Kurulugama RT, Mairinger T, May JC, Rennie EE, Baker ES, Smith RD, McLean JA, Hann S, Fjeldsted JC (2017) An Interlaboratory evaluation of drift tube ion mobility–mass spectrometry collision cross section measurements. Anal Chem 89:9048–9055. https://doi.org/10.1021/acs.analchem.7b01729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nichols CM, Dodds JN, Rose B, Picache JA, Morris CB, Codreanu SG, May JC, Sherrod SD, McLean JA (2018) Untargeted molecular discovery in primary metabolism: collision cross section as a molecular descriptor in ion mobility-mass spectrometry. Anal Chem. https://doi.org/10.1021/acs.analchem.8b04322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Causon TJ, Hann S (2015) Theoretical evaluation of peak capacity improvements by use of liquid chromatography combined with drift tube ion mobility-mass spectrometry. J Chromatogr A 1416:47–56. https://doi.org/10.1016/j.chroma.2015.09.009

    Article  CAS  PubMed  Google Scholar 

  36. Dodds JN, May JC, McLean JA (2017) Investigation of the complete suite of the leucine and isoleucine isomers: toward prediction of ion mobility separation capabilities. Anal Chem 89:952–959. https://doi.org/10.1021/acs.analchem.6b04171

    Article  CAS  PubMed  Google Scholar 

  37. Tim J. Causon, Le Si-Hung, Kenneth Newton, Ruwan T. Kurulugama, John Fjeldsted, Stephan Hann, (2019) Fundamental study of ion trapping and multiplexing using drift tube-ion mobility time-of-flight mass spectrometry for non-targeted metabolomics. Analytical and Bioanalytical Chemistry 411 (24):6265–6274

    Article  CAS  PubMed  Google Scholar 

  38. Taylor CF, Paton NW, Lilley KS, Binz P-A, Julian RK Jr, Jones AR, Zhu W, Apweiler R, Aebersold R, Deutsch EW, Dunn MJ, Heck AJR, Leitner A, Macht M, Mann M, Martens L, Neubert TA, Patterson SD, Ping P, Seymour SL, Souda P, Tsugita A, Vandekerckhove J, Vondriska TM, Whitelegge JP, Wilkins MR, Xenarios I, Yates Iii JR, Hermjakob H (2007) The minimum information about a proteomics experiment (MIAPE). Nat Biotechnol 25:887–893. https://doi.org/10.1038/nbt1329

    Article  CAS  PubMed  Google Scholar 

  39. Liebisch G, Ekroos K, Hermansson M, Ejsing CS (2017) Reporting of lipidomics data should be standardized. Biochim Biophys Acta 1862:747–751. https://doi.org/10.1016/j.bbalip.2017.02.013

    Article  CAS  Google Scholar 

  40. Burla B, Arita M, Arita M, Bendt AK, Cazenave-Gassiot A, Dennis EA, Ekroos K, Han X, Ikeda K, Liebisch G, Lin MK, Loh TP, Meikle PJ, Orešič M, Quehenberger O, Shevchenko A, Torta F, Wakelam MJO, Wheelock CE, Wenk MR (2018) MS-based lipidomics of human blood plasma: a community-initiated position paper to develop accepted guidelines. J Lipid Res 59:2001–2017. https://doi.org/10.1194/jlr.S087163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Broadhurst D, Goodacre R, Reinke SN, Kuligowski J, Wilson ID, Lewis MR, Dunn WB (2018) Guidelines and considerations for the use of system suitability and quality control samples in mass spectrometry assays applied in untargeted clinical metabolomic studies. Metabolomics 14:72. https://doi.org/10.1007/s11306-018-1367-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Blaženović I, Shen T, Mehta SS, Kind T, Ji J, Piparo M, Cacciola F, Mondello L, Fiehn O (2018) Increasing compound identification rates in untargeted lipidomics research with liquid chromatography drift time–ion mobility mass spectrometry. Anal Chem 90:10758–10764. https://doi.org/10.1021/acs.analchem.8b01527

    Article  CAS  PubMed  Google Scholar 

  43. MacLean BX, Pratt BS, Egertson JD, MacCoss MJ, Smith RD, Baker ES (2018) Using skyline to analyze data-containing liquid chromatography, ion mobility spectrometry, and mass spectrometry dimensions. J Am Soc Mass Spectrom 29:2182–2188. https://doi.org/10.1007/s13361-018-2028-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gabelica V, Shvartsburg AA, Afonso C, Barran P, Benesch JLP, Bleiholder C, Bowers MT, Bilbao A, Bush MF, Campbell JL, Campuzano IDG, Causon T, Clowers BH, Creaser CS, Pauw ED, Far J, Fernandez-Lima F, Fjeldsted JC, Giles K, Groessl M, Hogan CJ, Hann S, Kim HI, Kurulugama RT, May JC, McLean JA, Pagel K, Richardson K, Ridgeway ME, Rosu F, Sobott F, Thalassinos K, Valentine SJ, Wyttenbach T Recommendations for reporting ion mobility mass spectrometry measurements. Mass Spectrom Rev. 38:291–320. https://doi.org/10.1002/mas.21585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Vienna Business Agency and EQ BOKU VIBT GmbH are acknowledged for providing mass spectrometry instrumentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim J. Causon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Causon, T.J., Kurulugama, R.T., Hann, S. (2020). Drift-Tube Ion Mobility-Mass Spectrometry for Nontargeted ′Omics. In: Paglia, G., Astarita, G. (eds) Ion Mobility-Mass Spectrometry . Methods in Molecular Biology, vol 2084. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0030-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0030-6_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0029-0

  • Online ISBN: 978-1-0716-0030-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics