Skip to main content

Genome-Wide Composite Interval Mapping (GCIM) of Expressional Quantitative Trait Loci in Backcross Population

  • Protocol
  • First Online:
eQTL Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2082))

Abstract

One of the most remarkable findings in expressional quantitative trait locus (eQTL) mapping is that trans (distal) eQTL has small effect. The widely used approaches have a low power in the detection of small-effect eQTL. To overcome this issue, we integrate polygenic background control with multi-locus genetic model to develop genome-wide composite interval mapping (GCIM). This chapter covers the GCIM procedure in a backcross or doubled haploid populations. We describe the genetic model, parameter estimation, multi-locus genetic model, hypothesis tests, and software. Finally, some issues related to the GCIM method are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17(7):388–391

    Article  CAS  Google Scholar 

  2. Gilad Y, Rifkin SA, Pritchard JK (2008) Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet 24(8):408–415

    Article  CAS  Google Scholar 

  3. Gibson G, Weir B (2005) The quantitative genetics of Transcription. Trends Genet 21(11):616–623

    Article  CAS  Google Scholar 

  4. Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping of quantitative trait loci. Proc Natl Acad Sci U S A 90:10972–10976

    Article  CAS  Google Scholar 

  5. Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Li HH, Ye GY, Wang JK (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  Google Scholar 

  8. Xu S (2003) Estimating polygenic effects using markers of the entire genome. Genetics 163:789–801

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang H, Zhang YM, Li X, Masinde GL, Mohan S, Baylink DJ, Xu S (2005) Bayesian shrinkage estimation of QTL parameters. Genetics 170:465–480

    Article  CAS  Google Scholar 

  10. Wang SB, Wen YJ, Ren WL, Ni YL, Zhang J, Feng JY, Zhang YM (2016) Mapping small-effect and linked quantitative trait loci for complex traits in backcross or DH populations via a multi-locus GWAS methodology. Sci Rep 6:29951

    Article  CAS  Google Scholar 

  11. Jiang C, Zeng ZB (1997) Mapping quantitative trait loci with dominant and missing markers in various crosses from two inbred lines. Genetica 101:47–58

    Article  CAS  Google Scholar 

  12. Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in the line crosses using flanking markers. Heredity 69:315–324

    Article  CAS  Google Scholar 

  13. Xu S (2013) Mapping quantitative trait loci by controlling polygenic background effects. Genetics 195:1209–1222

    Article  CAS  Google Scholar 

  14. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    Article  Google Scholar 

  15. Xu S (2010) An expectation–maximization algorithm for the Lasso estimation of quantitative trait locus effects. Heredity 105:483–494

    Article  CAS  Google Scholar 

  16. Wen YJ, Zhang YW, Zhang J, Feng JY, Dunwell JM, Zhang YM (2018) An efficient multi-locus mixed model framework for the detection of small and linked QTLs in F2. Brief Bioinform. https://doi.org/10.1093/bib/bby058

  17. Kao CH, Zeng ZB, Teasdale RD (1999) Multiple interval mapping for quantitative trait loci. Genetics 152:1203–1216

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Risch N, Merikangas K (1996) The future of genetic studies of complex human diseases. Science 273:1516–1517

    Article  CAS  Google Scholar 

  19. Zhang YM, Mao Y, Xie C, Smith H, Luo L, Xu S (2005) Mapping quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L.). Genetics 169:2267–2275

    Article  CAS  Google Scholar 

  20. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  CAS  Google Scholar 

  21. Zhang Z, Ersoz E, Lai CQ, Todhunter RJ, Tiwari HK, Gore MA, Bradbury PJ, Yu J, Arnett DK, Ordovas JM, Buckler ES (2010) Mixed linear model approach adapted for genome-wide association studies. Nat Genet 42:355–360

    Article  CAS  Google Scholar 

  22. Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for association studies. Nat Genet 44:821–824

    Article  CAS  Google Scholar 

  23. Zhou X, Carbonetto P, Stephens M (2013) Polygenic modeling with Bayesian sparse linear mixed models. PLoS Genet 9:e1003264

    Article  CAS  Google Scholar 

  24. Li M, Liu X, Bradbury P, Yu J, Zhang YM, Todhunter RJ, Buckler ES, Zhang Z (2014) Enrichment of statistical power for genome-wide association studies. BMC Biol 12:73

    Article  CAS  Google Scholar 

  25. Segura V, Vilhjálmsson BJ, Platt A, Korte A, Seren Ü, Long Q, Nordborg M (2012) An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet 44:825–830

    Article  CAS  Google Scholar 

  26. Liu X, Huang M, Fan B, Buckler ES, Zhang Z (2016) Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet 12(2):e1005767

    Article  Google Scholar 

  27. Wang SB, Feng JY, Ren WL, Huang B, Zhou L, Wen YJ, Zhang J, Dunwell JM, Xu S, Zhang YM (2016) Improving power and accuracy of genome-wide association studies via a multi-locus mixed linear model methodology. Sci Rep 6:19444

    Article  CAS  Google Scholar 

  28. Wen YJ, Zhang H, Ni YL, Huang B, Zhang J, Feng JY, Wang SB, Dunwell JM, Zhang YM, Wu R (2018) Methodological implementation of mixed linear models in multi-locus genome-wide association studies. Brief Bioinform 19(4):700–712

    Article  Google Scholar 

  29. Tamba CL, Ni YL, Zhang YM (2017) Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. PLoS Comput Biol 13(1):e1005357

    Article  Google Scholar 

  30. Zhang J, Feng JY, Ni YL, Wen YJ, Niu Y, Tamba CL, Yue C, Song Q, Zhang YM (2017) pLARmEB: Integration of least angle regression with empirical Bayes for multi-locus genome-wide association studies. Heredity 118:517–524

    Article  CAS  Google Scholar 

  31. Ren WL, Wen YJ, Dunwell JM, Zhang YM (2018) pKWmEB: integration of Kruskal–Wallis test with empirical Bayes under polygenic background control for multi-locus genome-wide association study. Heredity 120:208–218

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31571268, U1602261, 31871242), and Huazhong Agricultural University Scientific & Technological Self-innovation Foundation (Program No. 2014RC020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan-Ming Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zhang, YM. (2020). Genome-Wide Composite Interval Mapping (GCIM) of Expressional Quantitative Trait Loci in Backcross Population. In: Shi, X. (eds) eQTL Analysis. Methods in Molecular Biology, vol 2082. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0026-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0026-9_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0025-2

  • Online ISBN: 978-1-0716-0026-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics