Skip to main content

Identification and Quantification of Splicing Quantitative Trait Loci

  • Protocol
  • First Online:
eQTL Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2082))

  • 2260 Accesses

Abstract

Most complex traits, including diseases, have a large genetic component. Identifying the genetic variants and genes underlying phenotypic variation remains one of the most important objectives of current biomedical research. Unlike Mendelian or familial diseases, which are usually caused by mutations in the coding regions of individual genes, complex diseases are thought to result from the cumulative effects of a large number of variants, of which, the vast majority are noncoding. Therefore, to discern the genetic underpinnings of a complex trait, we must first understand the impact of noncoding variation, which presumably affects gene regulation. In this chapter, we outline the recent progress made and methods used to discover putative regulatory regions associated with complex traits. We will specifically focus on mapping splicing quantitative trait loci (sQTL) using Yoruba samples from GEUVADIS as a motivating example.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirschhorn JN, Lindgren CM, Daly MJ, Kirby A, Schaffner SF, Burtt NP, Altshuler D, Parker A, Rioux JD, Platko J, et al (2001) Genomewide linkage analysis of stature in multiple populations reveals several regions with evidence of linkage to adult height. Am J Hum Genet 69:106–116

    Article  CAS  Google Scholar 

  2. Kruglyak L, Lander ES (1995) A nonparametric approach for mapping quantitative trait loci. Genetics 139:1421–1428

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Lappalainen T, Sammeth M, Friedländer MR, ‘t Hoen PAC, Monlong J, Rivas MA, Gonzalez-Porta M, Kurbatova N, Griebel T, Ferreira PG, et al (2013) Transcriptome and genome sequencing uncovers functional variation in humans. Nature 501:506

    Article  CAS  Google Scholar 

  4. Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, Cox NJ (2010) Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet 6:e1000888

    Article  Google Scholar 

  5. Li YI, van de Geijn B, Raj A, Knowles DA, Petti AA, Golan D, Gilad Y, Pritchard JK (2016) RNA splicing is a primary link between genetic variation and disease. Science 352:600–604

    Article  CAS  Google Scholar 

  6. Pagani F, Baralle FE (2004) Genomic variants in exons and introns: identifying the splicing spoilers. Nat Rev Genet 5:389

    Article  CAS  Google Scholar 

  7. Trapnell C, Hendrickson DG, Sauvageau M, Goff L, Rinn JL, Pachter L (2013) Differential analysis of gene regulation at transcript resolution with RNA-seq. Nat Biotechnol 31:46

    Article  CAS  Google Scholar 

  8. Patro R, Mount SM, Kingsford C (2014) Sailfish enables alignment-free isoform quantification from RNA-seq reads using lightweight algorithms. Nat Biotechnol 32:462

    Article  CAS  Google Scholar 

  9. Bray NL, Pimentel H, Melsted P, Pachter L (2016) Near-optimal probabilistic RNA-seq quantification. Nat Biotechnol 34:525

    Article  CAS  Google Scholar 

  10. Katz Y, Wang ET, Airoldi EM, Burge CB (2010) Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods 7:1009

    Article  CAS  Google Scholar 

  11. Anders S, Reyes A, Huber W (2012) Detecting differential usage of exons from RNA-seq data. Genome Res 22:133744

    Article  Google Scholar 

  12. Vaquero-Garcia J, Barrera A, Gazzara MR, Gonzalez-Vallinas J, Lahens NF, Hogenesch JB, Lynch KW, Barash Y (2016) A new view of transcriptome complexity and regulation through the lens of local splicing variations. Elife 5:e11752

    Article  Google Scholar 

  13. Li YI, Knowles DA, Humphrey J, Barbeira AN, Dickinson SP, Im HK, Pritchard JK (2018) Annotation-free quantification of RNA splicing using LeafCutter. Nat Genet 50:151

    Article  CAS  Google Scholar 

  14. Wu J, Anczukow O, Krainer AR, Zhang MQ, Zhang C (2013) OLego: fast and sensitive mapping of spliced mRNA-seq reads using small seeds. Nucleic Acids Res 41:5149–5163

    Article  CAS  Google Scholar 

  15. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M, Gingeras TR (2013) Star: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    Article  CAS  Google Scholar 

  16. Degner JF, Marioni JC, Pai AA, Pickrell JK, Nkadori E, Gilad Y, Pritchard JK (2009) Effect of read-mapping biases on detecting allele-specific expression from RNA-sequencing data. Bioinformatics 25:3207–3212

    Article  CAS  Google Scholar 

  17. Van de Geijn B, McVicker G, Gilad Y, Pritchard JK (2015) WASP: allele-specific software for robust molecular quantitative trait locus discovery. Nat Methods 12:1061

    Article  Google Scholar 

  18. Zhao K, Lu Zx, Park JW, Zhou Q, Xing Y (2013) GLiMMPS: robust statistical model for regulatory variation of alternative splicing using RNA-seq data. Genome Biol 14:R74

    Article  Google Scholar 

  19. Monlong J, Calvo M, Ferreira PG, Guigó R (2014) Identification of genetic variants associated with alternative splicing using sQTLseekeR. Nat Commun 5:4698

    Article  CAS  Google Scholar 

  20. Ongen H, Dermitzakis ET (2015) Alternative splicing QTLs in European and African populations. Am J Hum Genet 97:567–575

    Article  CAS  Google Scholar 

  21. Ongen H, Buil A, Brown AA, Dermitzakis ET, Delaneau O (2015) Fast and efficient QTL mapper for thousands of molecular phenotypes. Bioinformatics 32:1479–1485

    Article  Google Scholar 

  22. Shabalin AA (2012) Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28:1353–1358

    Article  CAS  Google Scholar 

  23. Degner JF, Pai AA, Pique-Regi R, Veyrieras JB, Gaffney DJ, Pickrell JK, De Leon S, Michelini K, Lewellen N, Crawford GE, et al (2012) DNase I sensitivity QTLs are a major determinant of human expression variation. Nature 482:390

    Article  CAS  Google Scholar 

  24. Bonferroni, C (1936) Teoria statistica delle classi e calcolo delle probabilita. Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commericiali di Firenze 8:3–62

    Google Scholar 

  25. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  26. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci 100:9440–9445

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Shah, A., Li, Y.I. (2020). Identification and Quantification of Splicing Quantitative Trait Loci. In: Shi, X. (eds) eQTL Analysis. Methods in Molecular Biology, vol 2082. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0026-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0026-9_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0025-2

  • Online ISBN: 978-1-0716-0026-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics