Skip to main content

Sparse Partial Least Squares Methods for Joint Modular Pattern Discovery

  • Protocol
  • First Online:
eQTL Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2082))

  • 2007 Accesses

Abstract

The underlying relationship between genomic factors and the response of diverse cancer drugs still remains unclear. A number of studies showed that the heterogeneous responses to anticancer treatments of patients were partly associated with their specific changes in gene expression and somatic alterations. However, how to identify the multiple-to-multiple relationships between genomic factors and drug response among pharmacogenomics data is still a challenging issue. Here, we introduce a sparse partial least squares (SPLS) framework with or without the network-regularized penalty to identify joint modular patterns demonstrated with a large-scale pairwise gene-expression and drug-response data. The identified modular patterns reveal some coordinated geneā€“drug associations. SPLS methods could be applied to many biological problems such as the eQTL analysis, which is designed to discover genetic variants that influence downstream gene expression level. In summary, SPLS-based methods are a set of powerful tools to uncover the associations between different types of features.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shoemaker RH (2006) The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6(10):813ā€“823. https://doi.org/10.1038/nrc1951

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S, Wilson CJ, Lehar J, Kryukov GV, Sonkin D, Reddy A, Liu M, Murray L, Berger MF, Monahan JE, Morais P, Meltzer J, Korejwa A, Jane-Valbuena J, Mapa FA, Thibault J, Bric-Furlong E, Raman P, Shipway A, Engels IH, Cheng J, Yu GK, Yu JJ, Aspesi P, de Silva M, Jagtap K, Jones MD, Wang L, Hatton C, Palescandolo E, Gupta S, Mahan S, Sougnez C, Onofrio RC, Liefeld T, MacConaill L, Winckler W, Reich M, Li NX, Mesirov JP, Gabriel SB, Getz G, Ardlie K, Chan V, Myer VE, Weber BL, Porter J, Warmuth M, Finan P, Harris JL, Meyerson M, Golub TR, Morrissey MP, Sellers WR, Schlegel R, Garraway LA (2012) The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483(7391):603--609. https://doi.org/10.1038/nature11003

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  3. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW, Greninger P, Thompson IR, Luo X, Soares J, Liu Q, Iorio F, Surdez D, Chen L, Milano RJ, Bignell GR, Tam AT, Davies H, Stevenson JA, Barthorpe S, Lutz SR, Kogera F, Lawrence K, McLaren-Douglas A, Mitropoulos X, Mironenko T, Thi H, Richardson L, Zhou W, Jewitt F, Zhang T, Oā€™Brien P, Boisvert JL, Price S, Hur W, Yang W, Deng X, Butler A, Choi HG, Chang JW, Baselga J, Stamenkovic I, Engelman JA, Sharma SV, Delattre O, Saez-Rodriguez J, Gray NS, Settleman J, Futreal PA, Haber DA, Stratton MR, Ramaswamy S, McDermott U, Benes CH (2012) Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 483(7391):570ā€“575. https://doi.org/10.1038/nature11005

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  4. Kutalik Z, Beckmann JS, Bergmann S (2008) A modular approach for integrative analysis of large-scale gene-expression and drug-response data. Nat Biotechnol 26(5):531ā€“539. https://doi.org/10.1038/nbt1397

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Chen J, Zhang S (2016) Integrative analysis for identifying joint modular patterns of gene-expression and drug-response data. Bioinformatics 32(11):1724ā€“1732. https://doi.org/10.1093/bioinformatics/btw059

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Rosipal R, Kramer N (2006) Overview and recent advances in partial least squares. In: Saunders C., Grobelnik M, Gunn S, Shawe-Taylor J (eds) Subspace, latent structure and feature selection. SLSFS 2005. Lecture notes in computer science, vol 3940. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11752790_2

    ChapterĀ  Google ScholarĀ 

  7. Li WY, Zhang SH, Liu CC, Zhou XJ (2012) Identifying multi-layer gene regulatory modules from multi-dimensional genomic data. Bioinformatics 28(19):2458ā€“2466. https://doi.org/10.1093/bioinformatics/bts476

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  8. Albert FW, Kruglyak L (2015) The role of regulatory variation in complex traits and disease. Nat Rev Genet 16(4):197ā€“212. https://doi.org/10.1038/nrg3891

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Gilad Y, Rifkin SA, Pritchard JK (2008) Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet 24(8):408ā€“415. https://doi.org/10.1016/j.tig.2008.06.001

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Michaelson JJ, Loguercio S, Beyer A (2009) Detection and interpretation of expression quantitative trait loci (eQTL). Methods 48(3):265ā€“276. https://doi.org/10.1016/j.ymeth.2009.03.004

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  11. Lander ES, Botstein D (1989) Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121(1):185ā€“199. http://www.genetics.org/content/121/1/185.abstract

    Google ScholarĀ 

  12. Haley CS, Knott SA (1992) A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315ā€“324. https://doi.org/10.1038/hdy.1992.131

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  13. Broman KW, Speed TP (2002) A model selection approach for the identification of quantitative trait loci in experimental crosses. J Roy Stat Soc B 64:641ā€“656. https://doi.org/10.1111/1467-9868.00354

    ArticleĀ  Google ScholarĀ 

  14. Bureau A, Dupuis J, Falls K, Lunetta KL, Hayward B, Keith TP, Van Eerdewegh P (2005) Identifying SNPs predictive of phenotype using random forests. Genet Epidemiol 28(2):171ā€“182. https://doi.org/10.1002/gepi.20041

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  15. Lee SSF, Sun L, Kustra R, Bull SB (2008) EM-random forest and new measures of variable importance for multi-locus quantitative trait linkage analysis. Bioinformatics 24(14):1603ā€“1610. https://doi.org/10.1093/bioinformatics/btn239

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  16. Chun H, Keles S (2009) Expression quantitative trait loci mapping with multivariate sparse partial least squares regression. Genetics 182(1):79ā€“90. https://doi.org/10.1534/genetics.109.100362

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  17. Cerami EG, Gross BE, Demir E, Rodchenkov I, Babur O, Anwar N, Schultz N, Bader GD, Sander C (2011) Pathway Commons, a web resource for biological pathway data. Nucleic Acids Res 39:D685ā€“D690. https://doi.org/10.1093/nar/gkq1039

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  18. Chun H, Keles S (2010) Sparse partial least squares regression for simultaneous dimension reduction and variable selection. J Roy Stat Soc B 72:3ā€“25. https://doi.org/10.1111/j.1467-9868.2009.00723.x

    ArticleĀ  Google ScholarĀ 

  19. Li CY, Li HZ (2008) Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 24(9):1175ā€“1182. https://doi.org/10.1093/bioinformatics/btn081

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Li C, Li H (2010) Variable selection and regression analysis for graph-structured covariates with an application to genomics. Ann Appl Stat 4(3):1498ā€“1516. https://doi.org/10.1214/10-AOAS332

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  21. Liu J, Huang J, Ma S (2013) Incorporating network structure in integrative analysis of cancer prognosis data. Genet Epidemiol 37(2):173ā€“183. https://doi.org/10.1002/gepi.21697

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  22. Zhang SH, Li QJ, Liu J, Zhou XJ (2011) A novel computational framework for simultaneous integration of multiple types of genomic data to identify microRNA-gene regulatory modules. Bioinformatics 27(13):I401ā€“I409. https://doi.org/10.1093/bioinformatics/btr206

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4(1):44ā€“57. https://doi.org/10.1038/nprot.2008.211

    ArticleĀ  CASĀ  Google ScholarĀ 

  24. Law V, Knox C, Djoumbou Y, Jewison T, Guo AC, Liu YF, Maciejewski A, Arndt D, Wilson M, Neveu V, Tang A, Gabriel G, Ly C, Adamjee S, Dame ZT, Han BS, Zhou Y, Wishart DS (2014) DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Res 42(D1):D1091ā€“D1097. https://doi.org/10.1093/nar/gkt1068

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27ā€“30. https://doi.org/10.1093/nar/28.1.27

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  26. Whirl-Carrillo M, McDonagh EM, Hebert JM, Gong L, Sangkuhl K, Thorn CF, Altman RB, Klein TE (2012) Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92(4):414ā€“417. https://doi.org/10.1038/clpt.2012.96

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  27. Warde-Farley D, Donaldson SL, Comes O, Zuberi K, Badrawi R, Chao P, Franz M, Grouios C, Kazi F, Lopes CT, Maitland A, Mostafavi S, Montojo J, Shao Q, Wright G, Bader GD, Morris Q (2010) The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res 38:W214ā€“W220. https://doi.org/10.1093/nar/gkq537

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  28. Futreal PA, Coin L, Marshall M, Down T, Hubbard T, Wooster R, Rahman N, Stratton MR (2004) A census of human cancer genes. Nat Rev Cancer 4(3):177ā€“183. https://doi.org/10.1038/nrc1299

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  29. Chen J, Zhang S (2018) Matrix integrative analysis (MIA) of multiple genomic data for modular patterns. Front Genet 9:194. https://doi.org/10.3389/fgene.2018.00194

    Google ScholarĀ 

Download references

Acknowledgment

This work has been supported by the National Natural Science Foundation of China, No. 61379092, 61422309, 61621003, and 11131009, the Strategic Priority Research Program of the Chinese Academy of Sciences (CAS) (XDB13040600), the Outstanding Young Scientist Program of CAS, CAS Frontier Science Research Key Project for Top Young Scientist (No. QYZDB-SSW-SYS008), and the Key Laboratory of Random Complex Structures and Data Science, CAS (No. 2008DP173182).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihua Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Chen, J., Zhang, S. (2020). Sparse Partial Least Squares Methods for Joint Modular Pattern Discovery. In: Shi, X. (eds) eQTL Analysis. Methods in Molecular Biology, vol 2082. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0026-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0026-9_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0025-2

  • Online ISBN: 978-1-0716-0026-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics