Skip to main content

Integration of Multi-omics Data for Expression Quantitative Trait Loci (eQTL) Analysis and eQTL Epistasis

  • Protocol
  • First Online:
eQTL Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2082))

Abstract

Expression quantitative trait loci (eQTL) mapping studies identify genetic loci that regulate gene expression. eQTL mapping studies can capture gene regulatory interactions and provide insight into the genetic mechanism of biological systems. Recently, the integration of multi-omics data, such as single-nucleotide polymorphisms (SNPs), copy number variations (CNVs), DNA methylation, and gene expression, plays an important role in elucidating complex biological systems, since biological systems involve a sequence of complex interactions between various biological processes. This chapter introduces multi-omics data that have been used in many eQTL studies and integrative methodologies that incorporate multi-omics data for eQTL studies. Furthermore, we describe a statistical approach that can detect nonlinear causal relationships between eQTLs, called eQTL epistasis, and its importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The 1000 Genomes Project Consortium (2015) A global reference for human genetic variation. Nature 526(7571):68–74

    Article  CAS  Google Scholar 

  2. Rockman MV, Kruglyak L (2006) Genetics of global gene expression. Nat Rev Genet 7(11):862–872

    Article  CAS  PubMed  Google Scholar 

  3. O’Connor C, Adams JU (2010) Essentials of cell biology. Nat Educ:1–100

    Google Scholar 

  4. Gutierrez-Arcelus M et al (2015) Tissue-specific effects of genetic and epigenetic variation on gene regulation and splicing. PLoS Genet 11(1):e1004958

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Hoheisel JD (2006) Microarray technology: beyond transcript profiling and genotype analysis. Nat Rev Genet 7:200–210

    Article  CAS  PubMed  Google Scholar 

  6. Goodwin S, McPherson JD, McCombie WR (2016) Coming of age: Ten years of next-generation sequencing technologies. Nat Rev Genet

    Google Scholar 

  7. Sun W, Hu Y (2013) eQTL mapping using RNA-seq data. Stat Biosci 5(1):198–219

    Article  PubMed  Google Scholar 

  8. Kristensen VN, Lingjaerde OC, Russnes HG, Vollan HK, Frigessi A, Borresen-Dale AL (2014) Principles and methods of integrative genomic analyses in cancer. Nat Rev Cancer 14(5):299–313

    Article  CAS  PubMed  Google Scholar 

  9. Zhang W, Li F, Nie L (2010) Integrating multiple ‘omics’ analysis for microbial biology: application and methodologies. Microbiology 156(2):287–301

    Article  CAS  PubMed  Google Scholar 

  10. Higdon R et al (2015) The promise of multi-omics and clinical data integration to identify and target personalized healthcare approaches in autism spectrum disorders. OMICS 19(4):197–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rebollar EA et al (2016) Using ‘omics’ and integrated multi-omics approaches to guide probiotic selection to mitigate chytridiomycosis and other emerging infectious diseases. Front Microbiol 7:68

    Article  PubMed  PubMed Central  Google Scholar 

  12. Cisek K, Krochmal M, Klein J, Mischak H (2016) The application of multi-omics and systems biology to identify therapeutic targets in chronic kidney disease. Nephrol Dial Transplant 31(12):2003–2011

    Article  PubMed  Google Scholar 

  13. Breckpot J, Thienpont B, Gewillig M, Allegaert K, Vermeesch JR, Devriendt K (2012) Differences in copy number variation between discordant monozygotic twins as a model for exploring chromosomal mosaicism in congenital heart defects. Mol Syndromol 2(2):81–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Henrichsen CN, Chaignat E, Reymond A (2009) Copy number variants, diseases and gene expression. Hum Mol Genet 18(R1):R1–R8

    Article  CAS  PubMed  Google Scholar 

  15. Aure MR et al (2013) Individual and combined effects of DNA methylation and copy number alterations on miRNA expression in breast tumors. Genome Biol 14(11):R126

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wagner JR, Busche S, Ge B, Kwan T, Pastinen T, Blanchette M (2014) The relationship between DNA methylation, genetic and expression inter-individual variation in untransformed human fibroblasts. Genome Biol 15(2):R37

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kang M, Kim DC, Liu C, Gao J (2015) Multiblock discriminant analysis for integrative genomic study. Biomed Res Int 2015:783592

    PubMed  PubMed Central  Google Scholar 

  18. Kim D-C, Kang M, Zhang B, Wu X, Liu C, Gao J (2014) Integration of DNA methylation, copy number variation, and gene expression for gene regulatory network inference and application to psychiatric disorders. IEEE Int Conf Bioinforma Bioeng 2014:238–242

    Google Scholar 

  19. Kang M, Park J, Kim DC, Biswas A, Liu C, Gao J (2017) Multi-block bipartite graph for integrative genomic analysis. IEEE/ACM Trans Comput Biol Bioinform 14:1350–1358

    Article  CAS  PubMed  Google Scholar 

  20. Freeman JL et al (2006) Copy number variation: new insights in genome diversity. Genome Res 16(8):949–961

    Article  CAS  PubMed  Google Scholar 

  21. Girirajan S, Campbell CD, Eichler EE (2011) Human copy number variation and complex genetic disease. Annu Rev Genet 45(1):203–226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gal-Yam EN et al (2008) Frequent switching of Polycomb repressive marks and DNA hypermethylation in the PC3 prostate cancer cell line. Proc Natl Acad Sci U S A 105(35):12979–12984

    Article  PubMed  PubMed Central  Google Scholar 

  23. Moore LD, Le T, Fan G (2013) DNA methylation and its basic function. Neuropsychopharmacology 38(1):23–38

    Article  CAS  PubMed  Google Scholar 

  24. Meissner A et al (2008) Genome-scale DNA methylation maps of pluripotent and differentiated cells. Nature 454(7205):766–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bush WS, Moore JH (2012) Chapter 11: genome-wide association studies. PLoS Comput Biol 8(12):e1002822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Reich DE et al (2001) Linkage disequilibrium in the human genome. Nature 411(6834):199–204

    Article  CAS  PubMed  Google Scholar 

  27. Cho S, Kim H, Oh S, Kim K, Park T (2009) Elastic-net regularization approaches for genome-wide association studies of rheumatoid arthritis. BMC Proc 3(Suppl 7):S25

    Article  PubMed  PubMed Central  Google Scholar 

  28. Waldmann P, Mészáros G, Gredler B, Fuerst C, Sölkner J (2013) Evaluation of the lasso and the elastic net in genome-wide association studies. Front Genet 4:270

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Goeman JJ, Solari A (2014) Multiple hypothesis testing in genomics. Stat Med 33(11):1946–1978

    Article  PubMed  Google Scholar 

  30. Cheung VG et al (2010) Polymorphic cis- and trans-regulation of human gene expression. PLoS Biol 8(9):e1000480

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nica AC, Dermitzakis ET (2013) Expression quantitative trait loci: present and future. Philos Trans R Soc Lond Ser B Biol Sci 368(1620):20120362

    Article  CAS  Google Scholar 

  32. Albert FW, Kruglyak L (2015) The role of regulatory variation in complex traits and disease. Nat Rev Genet 16(4):197–212

    Article  CAS  PubMed  Google Scholar 

  33. Michalak P (2008) Coexpression, coregulation, and cofunctionality of neighboring genes in eukaryotic genomes. Genomics 91(3):243–248

    Article  CAS  PubMed  Google Scholar 

  34. Chun H, Keles S (2009) Expression quantitative trait loci mapping with multivariate sparse partial least squares regression. Genetics 182(1):79–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Lee S, Zhu J, Xing E (2010) Adaptive multi-task Lasso: with application to eQTL detection. Adv Neural Inf 1:1306–1314

    Google Scholar 

  36. Zhang W, Zhu J, Schadt EE, Liu JS (2010) A Bayesian partition method for detecting pleiotropic and epistatic eQTL modules. PLoS Comput Biol 6(1):e1000642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Wittkopp PJ, Kalay G (2011) Cis-regulatory elements: molecular mechanisms and evolutionary processes underlying divergence. Nat Rev Genet 13(1):59–69

    Article  PubMed  CAS  Google Scholar 

  38. Huang T, Cai YD (2013) An Information-Theoretic Machine Learning Approach to Expression QTL Analysis. PLOS ONE 8(6): e67899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ritchie MD, Holzinger ER, Li R, Pendergrass SA, Kim D (2015) Methods of integrating data to uncover genotype–phenotype interactions. Nat Rev Genet 16(2):85–97

    Article  CAS  PubMed  Google Scholar 

  40. Wang D, Gu J (2016) Integrative clustering methods of multi-omics data for molecule-based cancer classifications. Quant Biol 4(1):58–67

    Article  CAS  Google Scholar 

  41. Zhang W et al (2013) Integrating genomic, epigenomic, and transcriptomic features reveals modular signatures underlying poor prognosis in ovarian cancer. Cell Rep 4(3):542–553

    Article  CAS  PubMed  Google Scholar 

  42. Zhang Z et al (2016) Molecular subtyping of serous ovarian cancer based on multi-omics data. Sci Rep 6:26001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kang M, Kim DC, Liu C, Zhang B, Wu X, Gao J (2014) Multi-block and multi-task learning for integrative genomic study. In: Proceedings—IEEE 14th International Conference on Bioinformatics and Bioengineering, BIBE 2014. IEEE Computer Society, Washington, DC, pp 38–45

    Chapter  Google Scholar 

  44. Zhang S, Liu CC, Li W, Shen H, Laird PW, Zhou XJ (2012) Discovery of multi-dimensional modules by integrative analysis of cancer genomic data. Nucleic Acids Res 40(19):9379–9391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang Z, Michailidis G (2015) A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data. Bioinformatics 32(1):1–8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Gregory KB, Momin AA, Coombes KR, Baladandayuthapani V (2014) Latent feature decompositions for integrative analysis of multi-platform genomic data. IEEE/ACM Trans Comput Biol Bioinforma 11(6):984–994

    Article  Google Scholar 

  47. Chung R, Kang C (2019) A multi-omics data simulator for complex disease studies and its application to evaluate multi-omics data analysis methods for disease classification. GigaScience 8(5):giz045

    Google Scholar 

  48. Furey TS (2012) ChIP-seq and beyond: New and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet

    Google Scholar 

  49. Kang M, Zhang C, Chun HW, Ding C, Liu C, Gao J (2015) EQTL epistasis: detecting epistatic effects and inferring hierarchical relationships of genes in biological pathways. Bioinformatics 31(5):656–664

    Article  CAS  PubMed  Google Scholar 

  50. Aylor DL, Zeng ZB (2008) From classical genetics to quantitative genetics to systems biology: modeling epistasis. PLoS Genet 4(3):e1000029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Cordell HJ (2002) Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum Mol Genet 11(20):2463–2468

    Article  CAS  PubMed  Google Scholar 

  52. Phenix H et al (2011) Quantitative epistasis analysis and pathway inference from genetic interaction data. PLoS Comput Biol 7(5):e1002048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Marchini J, Donnelly P, Cardon LR (2005) Genome-wide strategies for detecting multiple loci that influence complex diseases. Nat Genet 37(4):413–417

    Article  CAS  PubMed  Google Scholar 

  54. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, Maller J, Sklar P, de Bakker PIW, Daly MJ, Sham PC (2007) PLINK: a toolset for whole-genome association and population-based linkage analysis. American Journal of Human Genetics, 81

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kang, M., Gao, J. (2020). Integration of Multi-omics Data for Expression Quantitative Trait Loci (eQTL) Analysis and eQTL Epistasis. In: Shi, X. (eds) eQTL Analysis. Methods in Molecular Biology, vol 2082. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0026-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0026-9_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0025-2

  • Online ISBN: 978-1-0716-0026-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics