Probing the Dynamics of Plasma Membrane Glutamate Transporters in Real Time by Total Internal Fluorescence Reflection Microscopy

  • Eliana S. Di Cairano
  • Paola Marciani
  • Stefania Moretti
  • Carla Perego
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Plasma membrane solute carriers (SLCs) mediate the transport of a variety of substrates across the plasma membranes. There is a great interest in understanding how they work and how their density at the plasma membrane is dynamically regulated, given their involvement in important physiological processes ranging from neurotransmission to nutrient and drug absorption. Genetically encoded fluorescent fusion proteins of transporters and total internal reflection fluorescence microscopy (TIRFM) provide the ideal methodological approaches to follow their dynamics in living cells. Owing to its ability to selectively excite a very thin fluorescent section (~100 nm) immediately above the glass cover on which cells are grown, TIRFM is becoming the technique of election for measuring in a quantitative manner events occurring at or near the plasma membrane with high temporal and spatial resolution. Here we provide a method for using TIRF microscopy to study the basal and regulated trafficking of the excitatory amino acid transporter 3 (EAAT3/EAAC1), a glutamate transporter of the solute carrier family 1 (SLC1). A detailed protocol of how carrying out image recording under TIRF microscopy and how to extract quantitative data on transporter density at the plasma membrane is presented. The method and the applied analyses can be extended to other plasma membrane proteins (solute and ion transporters, channels, and receptors) in different cellular contexts.

Keywords

Cell signal transduction Constitutive and regulated trafficking Endocytosis Exocytosis Glutamate transporters Total internal reflection fluorescence microscopy 

References

  1. 1.
    César-Razquin A, Snijder B, Frappier-Brinton T, Isserlin R, Gyimesi G, Bai X, Reithmeier RA, Hepworth D, Hediger MA, Edwards AM, Superti-Furga GA (2015) A call for systematic research on solute carriers. Cell 162:478–487CrossRefPubMedGoogle Scholar
  2. 2.
    Lin L, Yee SW, Kim RB, Giacomini KM (2015) SLC transporters as therapeutic targets: emerging opportunities. Nat Rev Drug Discov 14:543–560CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    D'Amico A, Soragna A, Di Cairano E, Panzeri N, Anzai N, Vellea Sacchi F, Perego C (2010) The surface density of the glutamate transporter EAAC1 is controlled by interactions with PDZK1 and AP2 adaptor complexes. Traffic 11:1455–1470. doi:10.1111/j.1600-0854.2010.01110.x CrossRefPubMedGoogle Scholar
  4. 4.
    Ahn J, Pietrini G, Muth TR, Caplan MJ (1998) Expression of neurotransmitter transport systems in polarized cells. Methods Enzymol 296:370–388CrossRefPubMedGoogle Scholar
  5. 5.
    Qian Y, Galli A, Ramamoorthy S, Risso S, DeFelice LJ, Blakely RD (1997) Protein kinase C activation regulates human serotonin transporters in HEK-293 cells via altered cell surface expression. J Neurosci 17:45–57PubMedGoogle Scholar
  6. 6.
    Gabriel L, Stevens Z, Melikian H (2009) Measuring plasma membrane protein endocytic rates by reversible biotinylation. J Vis Exp 34: e1669. doi:10.3791/1669
  7. 7.
    Sargiacomo M, Lisanti M, Graeve L, Le Bivic A, Rodriguez-Boulan E (1989) Integral and peripheral protein composition of the apical and basolateral membrane domains in MDCK cells. J Membr Biol 107:277–286CrossRefPubMedGoogle Scholar
  8. 8.
    Perego C, Bulbarelli A, Longhi R, Caimi M, Villa A, Caplan MJ, Pietrini G (1997) Sorting of two polytopic proteins, the gamma-aminobutyric acid and betaine transporters, in polarized epithelial cells. J Biol Chem 272:6584–6592CrossRefPubMedGoogle Scholar
  9. 9.
    Perego C, Vanoni C, Villa A, Longhi R, Kaech SM, Fröhli E, Hajnal A, Kim SK, Pietrini G (1999) PDZ-mediated interactions retain the epithelial GABA transporter on the basolateral surface of polarized epithelial cells. EMBO J 18:2384–2393CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kanai Y, Hediger MA (2004) The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects. Pflugers Arch 447:469–479CrossRefPubMedGoogle Scholar
  11. 11.
    Kristensen AS, Andersen J, Jørgensen TN, Sørensen L, Eriksen J, Loland CJ, Strømgaard K, Gether U (2011) SLC6 neurotransmitter transporters: structure, function, and regulation. Pharmacol Rev 63:585–640CrossRefPubMedGoogle Scholar
  12. 12.
    Kumar V, Rahbek-Clemmensen T, Billesbølle CB, Jorgensen TN, Gether U, Newman AH (2014) Novel and high affinity fluorescent ligands for the serotonin transporter based on (s)-citalopram. ACS Med Chem Lett 5:696–699CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Stephens DJ, Allan VJ (2003) Light microscopy techniques for live cell imaging. Science 300:82–86CrossRefPubMedGoogle Scholar
  14. 14.
    Axelrod D (2008) Total internal reflection fluorescence microscopy. Methods Cell Biol 89:169–221. doi:10.1016/S0091-679X(08)00607-9 CrossRefPubMedGoogle Scholar
  15. 15.
    Burchfield JG, Lu J, Fazakerley DJ, Tan SX, Ng Y, Mele K, Buckley MJ, Han W, Hughes WE, James DE (2013) Novel systems for dynamically assessing insulin action in live cells reveals heterogeneity in the insulin response. Traffic 14:259–273. doi:10.1111/tra.12035, Epub 2013 Jan 18CrossRefPubMedGoogle Scholar
  16. 16.
    Perego C, Di Cairano ES, Ballabio M, Magnaghi V (2012) Neurosteroid allopregnanolone regulates EAAC1-mediated glutamate uptake and triggers actin changes in Schwann cells. J Cell Physiol 227:1740–1751. doi:10.1002/jcp.22898 CrossRefPubMedGoogle Scholar
  17. 17.
    Gluzman Y (1981) SV40-transformed simian cells support the replication of early SV40 mutants. Cell 23:175–182CrossRefPubMedGoogle Scholar
  18. 18.
    Daniele F, Di Cairano ES, Moretti S, Piccoli G, Perego C (2015) TIRFM and pH-sensitive GFP-probes to evaluate neurotransmitter vesicle dynamics in SH-SY5Y neuroblastoma cells: cell imaging and data analysis. J Vis Exp 95: e52267. doi:10.3791/52267.
  19. 19.
    Funicello M, Conti P, De Amici M, De Micheli C, Mennini T, Gobbi M (2004) Dissociation of [3H]L-glutamate uptake from L-glutamate-induced [3H]D-aspartate release by 3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]isoxazole-4-carboxylic acid and 3-hydroxy-4,5,6,6a-tetrahydro-3aH-pyrrolo[3,4-d]isoxazole-6-carboxylic acid, two conformationally constrained aspartate and glutamate analogs. Mol Pharmacol 66:522–552Google Scholar
  20. 20.
    Neuberg P, Kichler A (2014) Recent developments in nucleic acid delivery with polyethylenimines. Adv Genet 88:263–288PubMedGoogle Scholar
  21. 21.
    Treccani G, Musazzi L, Perego C, Milanese M, Nava N, Bonifacino T, Lamanna J, Malgaroli A, Drago F, Racagni G, Nyengaard JR, Wegener G, Bonanno G, Popoli M (2014) Stress and corticosterone increase the readily releasable pool of glutamate vesicles in synaptic terminals of prefrontal and frontal cortex. Mol Psychiatry 19:433–443CrossRefPubMedGoogle Scholar
  22. 22.
    Tsien RY (1998) The green fluorescent protein. Annu Rev Biochem 67:509–544. doi:10.1146/annurev.biochem.67.1.509 CrossRefPubMedGoogle Scholar
  23. 23.
    Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909CrossRefPubMedGoogle Scholar
  24. 24.
    Sorkina T, Doolen S, Galperin E, Zahniser NR, Sorkin A (2003) Oligomerization of dopamine transporters visualized in living cells by fluorescence resonance energy transfer microscopy. J Biol Chem 278:28274–28283CrossRefPubMedGoogle Scholar
  25. 25.
    Watts SD, Torres-Salazar D, Divito CB, Amara SG (2014) Cysteine transport through excitatory amino acid transporter 3 (EAAT3). PLoS One 9, e109245. doi:10.1371/journal.pone.0109245, eCollection 2014CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Crivat G, Taraska JW (2012) Imaging proteins inside cells with fluorescent tags. Trends Biotechnol 30:8–16. doi:10.1016/j.tibtech.2011.08.002, Epub 2011 Sep 15CrossRefPubMedGoogle Scholar
  27. 27.
    Lai YT, Chang YY, Hu L, Yang Y, Chao A, Du ZY, Tanner JA, Chye ML, Qian C, Ng KM, Li H, Sun H (2015) Rapid labeling of intracellular His-tagged proteins in living cells. Proc Natl Acad Sci U S A 112:2948–2953CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Huston JS, Levinson D, Mudgett-Hunter M, Tai MS, Novotný J, Margolies MN, Ridge RJ, Bruccoleri RE, Haber E, Crea R (1988) Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc Natl Acad Sci USA 85:5879–5883CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Perego C, Vanoni C, Bossi M, Massari S, Basudev H, Longhi R, Pietrini G (2000) The GLT-1 and GLAST glutamate transporters are expressed on morphologically distinct astrocytes and regulated by neuronal activity in primary hippocampal cocultures. J Neurochem 75:1076–1084CrossRefPubMedGoogle Scholar
  30. 30.
    Zuidema JM, Hyzinski-García MC, Van Vlasselaer K, Zaccor NW, Plopper GE, Mongin AA, Gilbert RJ (2014) Enhanced GLT-1 mediated glutamate uptake and migration of primary astrocytes directed by fibronectin-coated electrospun poly-L-lactic acid fibers. Biomaterials 35:1439–1449CrossRefPubMedGoogle Scholar
  31. 31.
    Diaspro A, Chirico G, Usai C, Ramoino P, Dobrucki J (2006) Photobleaching. In: Pawley JB (ed) Handbook of biological confocal microscopy. Springer, New York. doi:10.1007/978-0-387-45524-2_39 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2016

Authors and Affiliations

  • Eliana S. Di Cairano
    • 1
  • Paola Marciani
    • 1
  • Stefania Moretti
    • 1
  • Carla Perego
    • 1
  1. 1.Laboratory of Molecular and Cellular Physiology, Department of Pharmacological and Biomolecular SciencesUniversità degli Studi di MilanoMilanItaly

Personalised recommendations