Skip to main content

Sample Preparation of Rhodopsins in the E. coli Membrane for In Situ Magic Angle Spinning Solid-State Nuclear Magnetic Resonance Studies

  • Protocol
  • First Online:
Chemical and Synthetic Approaches in Membrane Biology

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 588 Accesses

Abstract

Determination of the structure and dynamics of membrane proteins in complex, native cellular environments is one of the primary targets of structural biology. Here, we present a protocol for the preparation of recombinant membrane proteins in the native E. coli membrane environment for solid-state NMR (SSNMR) studies. This protocol has been developed on Anabaena sensory rhodopsin (ASR), a seven-transmembrane α-helical light receptor, but should be easily transferable to similar recombinant membrane protein systems. In order for SSNMR studies to be possible on such complex systems, it is desirable to remove as much background signal as possible. This is achieved both through physically separating segments of the membrane containing ASR and through isotopic labeling strategies which strategically limit isotopic incorporation into background proteins. Through the implementation of these methods and 3D SSNMR spectroscopy, we find that it is possible to resolve and characterize 40% of the previously assigned residues of ASR in the E. coli membrane environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASR:

Anabaena Sensory Rhodopsin

EM:

E. coli membrane

IM:

Inner membrane

MAS:

Magic angle spinning

NA:

Natural abundance

NIC:

Non-induced cells

NMR:

Nuclear magnetic resonance

OM:

Outer membrane

rbUCN/rbUN:

Reduced-background UCN/UN labeled

SSNMR:

Solid-state NMR

UCN:

Uniformly 13C,15N-labeled

UN:

Uniformly 15N-labeled

References

  1. Grigorieff N, Ceska TA, Downing KH et al (1996) Electron-crystallographic refinement of the structure of bacteriorhodopsin. J Mol Biol 259:393–421. doi:10.1006/jmbi.1996.0328

    Article  CAS  PubMed  Google Scholar 

  2. Unger VM, Kumar NM, Gilula NB, Yeager M (1997) Projection structure of a gap junction membrane channel at 7 A resolution. Nat Struct Biol 4:39–43

    Article  CAS  PubMed  Google Scholar 

  3. Tang M, Comellas G, Rienstra CM (2013) Advanced solid-state NMR approaches for structure determination of membrane proteins and amyloid fibrils. Acc Chem Res 46:2080–2088. doi:10.1021/ar4000168

    Article  CAS  PubMed  Google Scholar 

  4. Lewandowski JR (2013) Advances in solid-state relaxation methodology for probing site-specific protein dynamics. Acc Chem Res 46:2018–2027. doi:10.1021/ar300334g

    Article  CAS  PubMed  Google Scholar 

  5. Murray DT, Das N, Cross TA (2013) Solid state NMR strategy for characterizing native membrane protein structures. Acc Chem Res 46:2172–2181. doi:10.1021/ar3003442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Opella SJ (2013) Structure determination of membrane proteins by nuclear magnetic resonance spectroscopy. Annu Rev Anal Chem 6:305–328. doi:10.1146/annurev-anchem-062012-092631

    Article  CAS  Google Scholar 

  7. Ladizhansky V (2014) Recent advances in magic-angle spinning solid-state NMR of proteins. Isr J Chem 54:86–103. doi:10.1002/ijch.201300096

    Article  CAS  Google Scholar 

  8. Wang S, Ladizhansky V (2014) Recent advances in magic angle spinning solid state NMR of membrane proteins. Prog Nucl Magn Reson Spectrosc 82:1–26. doi:10.1016/j.pnmrs.2014.07.001

    Article  PubMed  Google Scholar 

  9. Polenova T, Gupta R, Goldbourt A (2015) Magic angle spinning NMR spectroscopy: a versatile technique for structural and dynamic analysis of solid-phase systems. Anal Chem 87:5458–5469. doi:10.1021/ac504288u

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fu R, Wang X, Li C et al (2011) In situ structural characterization of a recombinant protein in native Escherichia coli membranes with solid-state magic-angle-spinning NMR. J Am Chem Soc 133:12370–12373. doi:10.1021/ja204062v

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Renault M, Tommassen-van Boxtel R, Bos MP et al (2012) Cellular solid-state nuclear magnetic resonance spectroscopy. Proc Natl Acad Sci U S A 109:4863–4868. doi:10.1073/pnas.1116478109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Miao Y, Qin H, Fu R et al (2012) M2 proton channel structural validation from full-length protein samples in synthetic bilayers and E. coli membranes. Angew Chem Int Ed Engl 51:8383–8386. doi:10.1002/anie.201204666.M2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Renault M, Pawsey S, Bos MP et al (2012) Solid-state NMR spectroscopy on cellular preparations enhanced by dynamic nuclear polarization. Angew Chem Int Ed Engl 51:2998–3001. doi:10.1002/anie.201105984

    Article  CAS  PubMed  Google Scholar 

  14. Jacso T, Franks WT, Rose H et al (2012) Characterization of membrane proteins in isolated native cellular membranes by dynamic nuclear polarization solid-state NMR spectroscopy without purification and reconstitution. Angew Chem Int Ed Engl 51:432–435. doi:10.1002/anie.201104987

    Article  CAS  PubMed  Google Scholar 

  15. Yamamoto K, Caporini MA, Im S-C et al (2015) Cellular solid-state NMR investigation of a membrane protein using dynamic nuclear polarization. Biochim Biophys Acta 1848:342–349. doi:10.1016/j.bbamem.2014.07.008

    Article  CAS  PubMed  Google Scholar 

  16. Sakakibara D, Sasaki A, Ikeya T et al (2009) Protein structure determination in living cells by in-cell NMR spectroscopy. Nature 458:102–105. doi:10.1038/nature07814

    Article  CAS  PubMed  Google Scholar 

  17. Leis A, Rockel B, Andrees L, Baumeister W (2009) Visualizing cells at the nanoscale. Trends Biochem Sci 34:60–70. doi:10.1016/j.tibs.2008.10.011

    Article  CAS  PubMed  Google Scholar 

  18. Matwiyoff NA, Needham TE (1972) Carbon-13 NMR spectroscopy of red blood cell suspensions. Biochem Biophys Res Commun 49:1158–1164. doi:10.1007/s13398-014-0173-7.2

    Article  CAS  PubMed  Google Scholar 

  19. Selenko P, Frueh DP, Elsaesser SJ et al (2008) In situ observation of protein phosphorylation by high-resolution NMR spectroscopy. Nat Struct Mol Biol 15:321–329. doi:10.1038/nsmb.1395

    Article  CAS  PubMed  Google Scholar 

  20. Serber Z, Keatinge-Clay AT, Ledwidge R et al (2001) High-resolution macromolecular NMR spectroscopy inside living cells. J Am Chem Soc 123:2446–2447. doi:10.1021/ja0057528

    Article  CAS  PubMed  Google Scholar 

  21. Kaplan M, Cukkemane A, van Zundert GCP et al (2015) Probing a cell-embedded megadalton protein complex by DNP-supported solid-state NMR. Nat Methods 12:5–9. doi:10.1038/nmeth.3406

    Article  Google Scholar 

  22. Jung KH, Trivedi VD, Spudich JL (2003) Demonstration of a sensory rhodopsin in eubacteria. Mol Microbiol 47:1513–1522. doi:10.1046/j.1365-2958.2003.03395.x

    Article  CAS  PubMed  Google Scholar 

  23. Shi L, Kawamura I, Jung K-H et al (2011) Conformation of a seven-helical transmembrane photosensor in the lipid environment. Angew Chem Int Ed 50:1302–1305. doi:10.1002/anie.201004422

    Article  CAS  Google Scholar 

  24. Wang S, Shi L, Okitsu T et al (2013) Solid-state NMR 13C and 15N resonance assignments of a seven-transmembrane helical protein Anabaena Sensory Rhodopsin. Biomol NMR Assign 7:253–256. doi:10.1007/s12104-012-9421-y

    Article  PubMed  Google Scholar 

  25. Wang S, Munro RA, Shi L et al (2013) Solid-state NMR spectroscopy structure determination of a lipid-embedded heptahelical membrane protein. Nat Methods 10:1007–1012. doi:10.1038/nmeth.2635

    Article  PubMed  Google Scholar 

  26. Marley J, Lu M, Bracken C (2001) A method for efficient isotopic labeling of recombinant proteins. J Biomol NMR 20:71–75

    Article  CAS  PubMed  Google Scholar 

  27. Baker LA, Daniëls M, van der Cruijsen EAW et al (2015) Efficient cellular solid-state NMR of membrane proteins by targeted protein labeling. J Biomol NMR 62:199–208. doi:10.1007/s10858-015-9936-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wagner S, Baars L, Ytterberg AJ et al (2007) Consequences of membrane protein overexpression in Escherichia coli. Mol Cell Proteomics 6:1527–1550. doi:10.1074/mcp.M600431-MCP200

    Article  CAS  PubMed  Google Scholar 

  29. Barinaga-Rementeria Ramírez I, Abedinpour P, Jergil B (2004) Purification of caveolae by affinity two-phase partitioning using biotinylated antibodies and NeutrAvidin-dextran. Anal Biochem 331:17–26. doi:10.1016/j.ab.2004.04.044

    Article  PubMed  Google Scholar 

  30. Everberg H, Clough J, Henderson P et al (2006) Isolation of Escherichia coli inner membranes by metal affinity two-phase partitioning. J Chromatogr A 1118:244–252. doi:10.1016/j.chroma.2006.03.123

    Article  CAS  PubMed  Google Scholar 

  31. Ward ME, Wang S, Munro R et al (2015) In situ structural studies of Anabaena sensory rhodopsin in the E. coli membrane. Biophys J 108:1683–1696. doi:10.1016/j.bpj.2015.02.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Ms. Emily Ritz for providing us with the UCN PL-ASR sample and Ms. Rachel Munro for her preliminary work on the isolation procedure. This research was supported by the Natural Sciences and Engineering Research Council of Canada (Discovery Grants to V.L. and L.S.B.). MEW is a recipient of the Ontario Graduate Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vladimir Ladizhansky or Leonid S. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Ward, M.E., Ladizhansky, V., Brown, L.S. (2016). Sample Preparation of Rhodopsins in the E. coli Membrane for In Situ Magic Angle Spinning Solid-State Nuclear Magnetic Resonance Studies. In: Shukla, A. (eds) Chemical and Synthetic Approaches in Membrane Biology. Springer Protocols Handbooks. Humana Press, New York, NY. https://doi.org/10.1007/8623_2016_5

Download citation

  • DOI: https://doi.org/10.1007/8623_2016_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6835-0

  • Online ISBN: 978-1-4939-6836-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics