Skip to main content

Approaches for Preparation and Biophysical Characterization of Transmembrane β-Barrels

  • Protocol
  • First Online:
Chemical and Synthetic Approaches in Membrane Biology

Abstract

Membrane proteins are influential members of the cellular machinery, as they are involved in a range of critical functions from immune receptors and ion transporters to enzymes and signaling molecules. These facets render membrane proteins as ideal drug targets. Despite their significance in biological systems, our knowledge of the structural and functional behavior of membrane proteins remains considerably limited, when compared with their soluble counterparts. This limitation continues to persist, owing largely to the difficulties in membrane protein purification and amenable methods for their characterization. In this review, we outline the methods for the extraction and purification of transmembrane β-barrel proteins, which will serve as a guide for generating membrane protein preparations in high amounts and of sufficient purity. Next, we provide a detailed description of the currently available protocols for efficient refolding of β-barrel membrane proteins in both lipidic and detergent systems. These protocols are designed to enable the protein to attain its native structural and functional characteristics in any chosen membrane mimetic environment. Further, we detail the current methodologies being employed for the biophysical and structural characterization of transmembrane β-barrels, using illustrative examples drawn from recent studies using various β-barrel membrane proteins. This consolidated summary of protocols and strategies will prove highly useful to membrane biologists and can be applied to the study of any uncharacterized β-barrel membrane protein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

β-OG:

n-Octyl-β-d-glucoside

τ c :

Rotational correlation time

BLM:

Bilayer lipid membrane

CD:

Circular dichroism

D7PC:

1,2-Diheptanoyl-sn-glycero-3-phosphocholine

DDM:

n-Dodecyl β-d-maltoside

DHPC:

1,2-Dihexanoyl-sn-glycero-3-phosphocholine

DLPC:

1,2-Dilauroyl-sn-glycero-3-phosphocholine

DMPC:

1,2-Dimyristoyl-sn-glycero-3-phosphocholine

DPC:

n-Dodecylphosphocholine

DPR:

Detergent-to-protein ratio

FRET:

Förster resonance energy transfer

HSQC:

Heteronuclear single quantum coherence

IB:

Inclusion bodies

IEX:

Ion-exchange chromatography

k q :

Bimolecular quenching constant

K SV :

Stern-Volmer constant

LDAO:

Lauryldimethylamine oxide

LPR:

Lipid-protein ratio

MP:

Membrane protein

MS:

Mass spectrometry

NMR:

Nuclear magnetic resonance

<t>:

Average fluorescence lifetime

References

  1. Orengo CA, Todd AE, Thornton JM (1999) From protein structure to function. Curr Opin Struct Biol 9(3):374–382. doi:10.1016/S0959-440X(99)80051-7

    Article  CAS  PubMed  Google Scholar 

  2. Sackmann E (2015) How actin/myosin crosstalks guide the adhesion, locomotion and polarization of cells. Biochim Biophys Acta 1853(11 Pt B):3132–3142. doi:10.1016/j.bbamcr.2015.06.012

    Google Scholar 

  3. Kitchen P, Day RE, Salman MM, Conner MT, Bill RM, Conner AC (2015) Beyond water homeostasis: diverse functional roles of mammalian aquaporins. Biochim Biophys Acta 1850(12):2410–2421. doi:10.1016/j.bbagen.2015.08.023

    Article  CAS  PubMed  Google Scholar 

  4. Keskin O, Tuncbag N, Gursoy A (2016) Predicting protein-protein interactions from the molecular to the proteome level. Chem Rev. doi:10.1021/acs.chemrev.5b00683

    Google Scholar 

  5. Fanelli F, Felline A, Raimondi F, Seeber M (2016) Structure network analysis to gain insights into GPCR function. Biochem Soc Trans 44(2):613–618. doi:10.1042/BST20150283

    Article  CAS  PubMed  Google Scholar 

  6. Chap H (2016) Forty five years with membrane phospholipids, phospholipases and lipid mediators: a historical perspective. Biochimie. doi:10.1016/j.biochi.2016.04.002

    PubMed  Google Scholar 

  7. Schwartz TU (2016) The structure inventory of the nuclear pore complex. J Mol Biol. doi:10.1016/j.jmb.2016.03.015

    PubMed Central  Google Scholar 

  8. Shrestha L, Young JC (2016) Function and chemotypes of human Hsp70 chaperones. Curr Top Med Chem. doi:10.2174/1568026616666160413142028

    PubMed Central  Google Scholar 

  9. Joh NH, Min A, Faham S, Whitelegge JP, Yang D, Woods VL, Bowie JU (2008) Modest stabilization by most hydrogen-bonded side-chain interactions in membrane proteins. Nature 453(7199):1266–1270. doi:10.1038/nature06977

    Article  CAS  PubMed  Google Scholar 

  10. Dong H, Sharma M, Zhou HX, Cross TA (2012) Glycines: role in alpha-helical membrane protein structures and a potential indicator of native conformation. Biochemistry 51(24):4779–4789. doi:10.1021/bi300090x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chung HS, Piana-Agostinetti S, Shaw DE, Eaton WA (2015) Structural origin of slow diffusion in protein folding. Science 349(6255):1504–1510. doi:10.1126/science.aab1369

    Article  CAS  PubMed  Google Scholar 

  12. Min D, Jefferson RE, Bowie JU, Yoon TY (2015) Mapping the energy landscape for second-stage folding of a single membrane protein. Nat Chem Biol 11(12):981–987. doi:10.1038/nchembio.1939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Makwana KM, Mahalakshmi, R (2015) Implications of aromatic–aromatic interactions: From protein structures to peptide models. Protein Sci 24 (12):1920-1933. doi:10.1002/pro.2814

    Google Scholar 

  14. Haney CM, Werner HM, McKay JJ, Horne WS (2016) Thermodynamic origin of alpha-helix stabilization by side-chain cross-links in a small protein. Org Biomol Chem. doi:10.1039/c6ob00475j

    PubMed Central  Google Scholar 

  15. Smith AE, Zhou LZ, Gorensek AH, Senske M, Pielak GJ (2016) In-cell thermodynamics and a new role for protein surfaces. Proc Natl Acad Sci U S A 113(7):1725–1730. doi:10.1073/pnas.1518620113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sanders CR, Myers JK (2004) Disease-related misassembly of membrane proteins. Annu Rev Biophys Biomol Struct 33:25–51. doi:10.1146/annurev.biophys.33.110502.140348

    Article  CAS  PubMed  Google Scholar 

  17. Gold V, Kudryashev M (2016) Recent progress in structure and dynamics of dual-membrane-spanning bacterial nanomachines. Curr Opin Struct Biol 39:1–7. doi:10.1016/j.sbi.2016.03.001

    Article  CAS  PubMed  Google Scholar 

  18. Touw WG, Joosten RP, Vriend G (2016) New biological insights from better structure models. J Mol Biol 428(6):1375–1393. doi:10.1016/j.jmb.2016.02.002

    Article  CAS  PubMed  Google Scholar 

  19. Akutsu M, Dikic I, Bremm A (2016) Ubiquitin chain diversity at a glance. J Cell Sci 129(5):875–880. doi:10.1242/jcs.183954

    Article  CAS  PubMed  Google Scholar 

  20. Geeves MA (2016) The ATPase mechanism of myosin and actomyosin. Biopolymers. doi:10.1002/bip.22853

    PubMed  Google Scholar 

  21. Hayer-Hartl M, Bracher A, Hartl FU (2016) The GroEL-GroES chaperonin machine: a nano-cage for protein folding. Trends Biochem Sci 41(1):62–76. doi:10.1016/j.tibs.2015.07.009

    Article  CAS  PubMed  Google Scholar 

  22. Just WW, Peranen J (2016) Small GTPases in peroxisome dynamics. Biochim Biophys Acta 1863(5):1006–1013. doi:10.1016/j.bbamcr.2016.01.004

    Article  CAS  PubMed  Google Scholar 

  23. Skjaerven L, Cuellar J, Martinez A, Valpuesta JM (2015) Dynamics, flexibility, and allostery in molecular chaperonins. FEBS Lett 589(19 Pt A):2522–2532. doi:10.1016/j.febslet.2015.06.019

    Google Scholar 

  24. van de Willige D, Hoogenraad CC, Akhmanova A (2016) Microtubule plus-end tracking proteins in neuronal development. Cell Mol Life Sci 73(10):2053–2077. doi:10.1007/s00018-016-2168-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28:319–365. doi:10.1146/annurev.biophys.28.1.319

    Article  CAS  PubMed  Google Scholar 

  26. McCulloch CA, Downey GP, El-Gabalawy H (2006) Signalling platforms that modulate the inflammatory response: new targets for drug development. Nat Rev Drug Discov 5(10):864–876. doi:10.1038/nrd2109

    Article  CAS  PubMed  Google Scholar 

  27. Kline KA, Falker S, Dahlberg S, Normark S, Henriques-Normark B (2009) Bacterial adhesins in host-microbe interactions. Cell Host Microbe 5(6):580–592. doi:10.1016/j.chom.2009.05.011

    Article  CAS  PubMed  Google Scholar 

  28. Ritter SL, Hall RA (2009) Fine-tuning of GPCR activity by receptor-interacting proteins. Nat Rev Mol Cell Biol 10(12):819–830. doi:10.1038/nrm2803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hennessy EJ, Parker AE, O’Neill LA (2010) Targeting Toll-like receptors: emerging therapeutics? Nat Rev Drug Discov 9(4):293–307. doi:10.1038/nrd3203

    Article  CAS  PubMed  Google Scholar 

  30. Venkatakrishnan AJ, Deupi X, Lebon G, Tate CG, Schertler GF, Babu MM (2013) Molecular signatures of G-protein-coupled receptors. Nature 494(7436):185–194. doi:10.1038/nature11896

    Article  CAS  PubMed  Google Scholar 

  31. Verkman AS, Anderson MO, Papadopoulos MC (2014) Aquaporins: important but elusive drug targets. Nat Rev Drug Discov 13(4):259–277. doi:10.1038/nrd4226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cournia Z, Allen TW, Andricioaei I, Antonny B, Baum D, Brannigan G, Buchete NV, Deckman JT, Delemotte L, Del Val C, Friedman R, Gkeka P, Hege HC, Henin J, Kasimova MA, Kolocouris A, Klein ML, Khalid S, Lemieux MJ, Lindow N, Roy M, Selent J, Tarek M, Tofoleanu F, Vanni S, Urban S, Wales DJ, Smith JC, Bondar AN (2015) Membrane protein structure, function, and dynamics: a perspective from experiments and theory. J Membr Biol 248(4):611–640. doi:10.1007/s00232-015-9802-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Selkoe DJ (1999) Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399(6738 Suppl):A23–A31

    Article  CAS  PubMed  Google Scholar 

  34. Harte NP, Klyubin I, McCarthy EK, Min S, Garrahy SA, Xie Y, Davey GP, Boland JJ, Rowan MJ, Mok KH (2015) Amyloid oligomers and mature fibrils prepared from an innocuous protein cause diverging cellular death mechanisms. J Biol Chem 290(47):28343–28352. doi:10.1074/jbc.M115.676072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ng DP, Poulsen BE, Deber CM (2012) Membrane protein misassembly in disease. Biochim Biophys Acta 1818(4):1115–1122. doi:10.1016/j.bbamem.2011.07.046

    Article  CAS  PubMed  Google Scholar 

  36. Smilansky A, Dangoor L, Nakdimon I, Ben-Hail D, Mizrachi D, Shoshan-Barmatz V (2015) The voltage-dependent anion channel 1 mediates amyloid beta toxicity and represents a potential target for Alzheimer disease therapy. J Biol Chem 290(52):30670–30683. doi:10.1074/jbc.M115.691493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Parakh S, Atkin JD (2016) Protein folding alterations in amyotrophic lateral sclerosis. Brain Res. doi:10.1016/j.brainres.2016.04.010

    PubMed  Google Scholar 

  38. le Maire M, Champeil P, Moller JV (2000) Interaction of membrane proteins and lipids with solubilizing detergents. Biochim Biophys Acta 1508(1-2):86–111

    Article  PubMed  Google Scholar 

  39. Seddon AM, Curnow P, Booth PJ (2004) Membrane proteins, lipids and detergents: not just a soap opera. Biochim Biophys Acta 1666(1-2):105–117. doi:10.1016/j.bbamem.2004.04.011

    Article  CAS  PubMed  Google Scholar 

  40. Zhou HX, Cross TA (2013) Influences of membrane mimetic environments on membrane protein structures. Annu Rev Biophys 42:361–392. doi:10.1146/annurev-biophys-083012-130326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Popot JL (2014) Folding membrane proteins in vitro: a table and some comments. Arch Biochem Biophys 564:314–326. doi:10.1016/j.abb.2014.06.029

    Article  CAS  PubMed  Google Scholar 

  42. Mogensen JE, Otzen DE (2005) Interactions between folding factors and bacterial outer membrane proteins. Mol Microbiol 57(2):326–346. doi:10.1111/j.1365-2958.2005.04674.x

    Article  CAS  PubMed  Google Scholar 

  43. Koehler J, Woetzel N, Staritzbichler R, Sanders CR, Meiler J (2009) A unified hydrophobicity scale for multispan membrane proteins. Proteins 76(1):13–29. doi:10.1002/prot.22315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Foffi G, Pastore A, Piazza F, Temussi PA (2013) Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10–14 June 2012). Phys Biol 10(4):040301. doi:10.1088/1478-3975/10/4/040301

    Article  CAS  PubMed  Google Scholar 

  45. Otzen DE, Andersen KK (2013) Folding of outer membrane proteins. Arch Biochem Biophys 531(1-2):34–43. doi:10.1016/j.abb.2012.10.008

    Article  CAS  PubMed  Google Scholar 

  46. Wimley WC, Creamer TP, White SH (1996) Solvation energies of amino acid side chains and backbone in a family of host-guest pentapeptides. Biochemistry 35(16):5109–5124. doi:10.1021/bi9600153

    Article  CAS  PubMed  Google Scholar 

  47. Wimley WC, White SH (1996) Experimentally determined hydrophobicity scale for proteins at membrane interfaces. Nat Struct Biol 3(10):842–848

    Article  CAS  PubMed  Google Scholar 

  48. Killian JA, von Heijne G (2000) How proteins adapt to a membrane-water interface. Trends Biochem Sci 25(9):429–434

    Article  CAS  PubMed  Google Scholar 

  49. Hessa T, Kim H, Bihlmaier K, Lundin C, Boekel J, Andersson H, Nilsson I, White SH, von Heijne G (2005) Recognition of transmembrane helices by the endoplasmic reticulum translocon. Nature 433(7024):377–381. doi:10.1038/nature03216

    Article  CAS  PubMed  Google Scholar 

  50. Jackups R Jr, Cheng S, Liang J (2006) Sequence motifs and antimotifs in beta-barrel membrane proteins from a genome-wide analysis: the Ala-Tyr dichotomy and chaperone binding motifs. J Mol Biol 363(2):611–623. doi:10.1016/j.jmb.2006.07.095

    Article  CAS  PubMed  Google Scholar 

  51. Hessa T, Meindl-Beinker NM, Bernsel A, Kim H, Sato Y, Lerch-Bader M, Nilsson I, White SH, von Heijne G (2007) Molecular code for transmembrane-helix recognition by the Sec61 translocon. Nature 450(7172):1026–1030. doi:10.1038/nature06387

    Article  CAS  PubMed  Google Scholar 

  52. MacCallum JL, Tieleman DP (2011) Hydrophobicity scales: a thermodynamic looking glass into lipid-protein interactions. Trends Biochem Sci 36(12):653–662. doi:10.1016/j.tibs.2011.08.003

    Article  CAS  PubMed  Google Scholar 

  53. Moon CP, Fleming KG (2011) Side-chain hydrophobicity scale derived from transmembrane protein folding into lipid bilayers. Proc Natl Acad Sci U S A 108(25):10174–10177. doi:10.1073/pnas.1103979108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Ojemalm K, Higuchi T, Jiang Y, Langel U, Nilsson I, White SH, Suga H, von Heijne G (2011) Apolar surface area determines the efficiency of translocon-mediated membrane-protein integration into the endoplasmic reticulum. Proc Natl Acad Sci U S A 108(31):E359–E364. doi:10.1073/pnas.1100120108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ojemalm K, Botelho SC, Studle C, von Heijne G (2013) Quantitative analysis of SecYEG-mediated insertion of transmembrane alpha-helices into the bacterial inner membrane. J Mol Biol 425(15):2813–2822. doi:10.1016/j.jmb.2013.04.025

    Article  PubMed  CAS  Google Scholar 

  56. Lin M, Gessmann D, Naveed H, Liang J (2016) Outer membrane protein folding and topology from a computational transfer free energy scale. J Am Chem Soc 138(8):2592–2601. doi:10.1021/jacs.5b10307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sosinsky GE, Nicholson BJ (2005) Structural organization of gap junction channels. Biochim Biophys Acta 1711(2):99–125. doi:10.1016/j.bbamem.2005.04.001

    Article  CAS  PubMed  Google Scholar 

  58. Kedrov A, Janovjak H, Sapra KT, Muller DJ (2007) Deciphering molecular interactions of native membrane proteins by single-molecule force spectroscopy. Annu Rev Biophys Biomol Struct 36:233–260. doi:10.1146/annurev.biophys.36.040306.132640

    Article  CAS  PubMed  Google Scholar 

  59. White SH, von Heijne G (2008) How translocons select transmembrane helices. Annu Rev Biophys 37:23–42. doi:10.1146/annurev.biophys.37.032807.125904

    Article  CAS  PubMed  Google Scholar 

  60. Ojemalm K, Halling KK, Nilsson I, von Heijne G (2012) Orientational preferences of neighboring helices can drive ER insertion of a marginally hydrophobic transmembrane helix. Mol Cell 45(4):529–540. doi:10.1016/j.molcel.2011.12.024

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Chang YC, Bowie JU (2014) Measuring membrane protein stability under native conditions. Proc Natl Acad Sci U S A 111(1):219–224. doi:10.1073/pnas.1318576111

    Article  CAS  PubMed  Google Scholar 

  62. Schlebach JP, Woodall NB, Bowie JU, Park C (2014) Bacteriorhodopsin folds through a poorly organized transition state. J Am Chem Soc 136(47):16574–16581. doi:10.1021/ja508359n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Deatherage CL, Lu Z, Kim JH, Sanders CR (2015) Notch transmembrane domain: secondary structure and topology. Biochemistry 54(23):3565–3568. doi:10.1021/acs.biochem.5b00456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Nilsson OB, Hedman R, Marino J, Wickles S, Bischoff L, Johansson M, Muller-Lucks A, Trovato F, Puglisi JD, O’Brien EP, Beckmann R, von Heijne G (2015) Cotranslational protein folding inside the ribosome exit tunnel. Cell Rep 12(10):1533–1540. doi:10.1016/j.celrep.2015.07.065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Sanders CR (2015) Perplexing new insight into the dynamics of the EmrE transporter. J Gen Physiol 146(6):441–444. doi:10.1085/jgp.201511523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Schlebach JP, Sanders CR (2015) The safety dance: biophysics of membrane protein folding and misfolding in a cellular context. Q Rev Biophys 48(1):1–34. doi:10.1017/S0033583514000110

    Article  CAS  PubMed  Google Scholar 

  67. Schlebach JP, Narayan M, Alford C, Mittendorf KF, Carter BD, Li J, Sanders CR (2015) Conformational stability and pathogenic misfolding of the integral membrane protein PMP22. J Am Chem Soc 137(27):8758–8768. doi:10.1021/jacs.5b03743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Cymer F, von Heijne G, White SH (2015) Mechanisms of integral membrane protein insertion and folding. J Mol Biol 427(5):999–1022. doi:10.1016/j.jmb.2014.09.014

    Article  CAS  PubMed  Google Scholar 

  69. Shanmugavadivu B, Apell HJ, Meins T, Zeth K, Kleinschmidt JH (2007) Correct folding of the beta-barrel of the human membrane protein VDAC requires a lipid bilayer. J Mol Biol 368(1):66–78. doi:10.1016/j.jmb.2007.01.066

    Article  CAS  PubMed  Google Scholar 

  70. Nesper J, Brosig A, Ringler P, Patel GJ, Muller SA, Kleinschmidt JH, Boos W, Diederichs K, Welte W (2008) Omp85(Tt) from Thermus thermophilus HB27: an ancestral type of the Omp85 protein family. J Bacteriol 190(13):4568–4575. doi:10.1128/JB.00369-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fairman JW, Noinaj N, Buchanan SK (2011) The structural biology of beta-barrel membrane proteins: a summary of recent reports. Curr Opin Struct Biol 21(4):523–531. doi:10.1016/j.sbi.2011.05.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Hinnebusch BJ, Jarrett CO, Callison JA, Gardner D, Buchanan SK, Plano GV (2011) Role of the Yersinia pestis Ail protein in preventing a protective polymorphonuclear leukocyte response during bubonic plague. Infect Immun 79(12):4984–4989. doi:10.1128/IAI.05307-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Andersen KK, Wang H, Otzen DE (2012) A kinetic analysis of the folding and unfolding of OmpA in urea and guanidinium chloride: single and parallel pathways. Biochemistry 51(42):8371–8383. doi:10.1021/bi300974y

    Article  CAS  PubMed  Google Scholar 

  74. Noinaj N, Buchanan SK, Cornelissen CN (2012) The transferrin-iron import system from pathogenic Neisseria species. Mol Microbiol 86(2):246–257. doi:10.1111/mmi.12002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Noinaj N, Kuszak AJ, Gumbart JC, Lukacik P, Chang H, Easley NC, Lithgow T, Buchanan SK (2013) Structural insight into the biogenesis of beta-barrel membrane proteins. Nature 501(7467):385–390. doi:10.1038/nature12521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Kleinschmidt JH (2015) Folding of beta-barrel membrane proteins in lipid bilayers – unassisted and assisted folding and insertion. Biochim Biophys Acta 1848(9):1927–1943. doi:10.1016/j.bbamem.2015.05.004

    Article  CAS  PubMed  Google Scholar 

  77. Bakelar J, Buchanan SK, Noinaj N (2016) The structure of the beta-barrel assembly machinery complex. Science 351(6269):180–186. doi:10.1126/science.aad3460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Pocanschi CL, Apell HJ, Puntervoll P, Hogh B, Jensen HB, Welte W, Kleinschmidt JH (2006) The major outer membrane protein of Fusobacterium nucleatum (FomA) folds and inserts into lipid bilayers via parallel folding pathways. J Mol Biol 355(3):548–561. doi:10.1016/j.jmb.2005.10.060

    Article  CAS  PubMed  Google Scholar 

  79. Schafer NP, Truong HH, Otzen DE, Lindorff-Larsen K, Wolynes PG (2016) Topological constraints and modular structure in the folding and functional motions of GlpG, an intramembrane protease. Proc Natl Acad Sci U S A 113(8):2098–2103. doi:10.1073/pnas.1524027113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Noinaj N, Kuszak AJ, Buchanan SK (2015) Heat modifiability of outer membrane proteins from gram-negative bacteria. Methods Mol Biol 1329:51–56. doi:10.1007/978-1-4939-2871-2_4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. White SH (2004) The progress of membrane protein structure determination. Protein Sci 13(7):1948–1949. doi:10.1110/ps.04712004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Carpenter EP, Beis K, Cameron AD, Iwata S (2008) Overcoming the challenges of membrane protein crystallography. Curr Opin Struct Biol 18(5):581–586. doi:10.1016/j.sbi.2008.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cherezov V, Abola E, Stevens RC (2010) Recent progress in the structure determination of GPCRs, a membrane protein family with high potential as pharmaceutical targets. Methods Mol Biol 654:141–168. doi:10.1007/978-1-60761-762-4_8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kozma D, Simon I, Tusnady GE (2013) PDBTM: Protein Data Bank of transmembrane proteins after 8 years. Nucleic Acids Res 41(Database issue):D524–D529. doi:10.1093/nar/gks1169

    Article  CAS  PubMed  Google Scholar 

  85. http://blanco.biomol.uci.edu/mpstruc/. Membrane Proteins of Known 3D Structure

  86. Koebnik R, Locher KP, Van Gelder P (2000) Structure and function of bacterial outer membrane proteins: barrels in a nutshell. Mol Microbiol 37(2):239–253

    Article  CAS  PubMed  Google Scholar 

  87. Bartlett AI, Radford SE (2009) An expanding arsenal of experimental methods yields an explosion of insights into protein folding mechanisms. Nat Struct Mol Biol 16(6):582–588. doi:10.1038/nsmb.1592

    Article  CAS  PubMed  Google Scholar 

  88. Cladera J, Rigaud JL, Villaverde J, Dunach M (1997) Liposome solubilization and membrane protein reconstitution using Chaps and Chapso. Eur J Biochem 243(3):798–804

    Article  CAS  PubMed  Google Scholar 

  89. Figler RA, Omote H, Nakamoto RK, Al-Shawi MK (2000) Use of chemical chaperones in the yeast Saccharomyces cerevisiae to enhance heterologous membrane protein expression: high-yield expression and purification of human P-glycoprotein. Arch Biochem Biophys 376(1):34–46. doi:10.1006/abbi.2000.1712

    Article  CAS  PubMed  Google Scholar 

  90. Tate CG (2001) Overexpression of mammalian integral membrane proteins for structural studies. FEBS Lett 504(3):94–98

    Article  CAS  PubMed  Google Scholar 

  91. Bannwarth M, Schulz GE (2003) The expression of outer membrane proteins for crystallization. Biochim Biophys Acta 1610(1):37–45

    Article  CAS  PubMed  Google Scholar 

  92. Sarramegna V, Talmont F, Demange P, Milon A (2003) Heterologous expression of G-protein-coupled receptors: comparison of expression systems from the standpoint of large-scale production and purification. Cell Mol Life Sci 60(8):1529–1546

    Article  CAS  PubMed  Google Scholar 

  93. Tate CG, Grisshammer R (1996) Heterologous expression of G-protein-coupled receptors. Trends Biotechnol 14(11):426–430. doi:10.1016/0167-7799(96)10059-7

    Article  CAS  PubMed  Google Scholar 

  94. Rai M, Padh H (2001) Expression systems for production of heterologous proteins. Curr Sci 80(9):1121–1128

    CAS  Google Scholar 

  95. Zerbs S, Frank AM, Collart FR (2009) Bacterial systems for production of heterologous proteins. Methods Enzymol 463:149–168. doi:10.1016/S0076-6879(09)63012-3

    Article  CAS  PubMed  Google Scholar 

  96. Lasken RS (2009) Genomic DNA amplification by the multiple displacement amplification (MDA) method. Biochem Soc Trans 37(Pt 2):450–453. doi:10.1042/BST0370450

    Article  CAS  PubMed  Google Scholar 

  97. Bundo M, Sunaga F, Ueda J, Kasai K, Kato T, Iwamoto K (2012) A systematic evaluation of whole genome amplification of bisulfite-modified DNA. Clin Epigenetics 4(1):22. doi:10.1186/1868-7083-4-22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Macaulay IC, Voet T (2014) Single cell genomics: advances and future perspectives. PLoS Genet 10(1), e1004126. doi:10.1371/journal.pgen.1004126

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Singh MI, Jain V (2013) Tagging the expressed protein with 6 histidines: rapid cloning of an amplicon with three options. PLoS One 8(5), e63922. doi:10.1371/journal.pone.0063922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dubey AA, Singh MI, Jain V (2016) Rapid and robust PCR-based all-recombinant cloning methodology. PLoS One 11(3), e0152106. doi:10.1371/journal.pone.0152106

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Bonander N, Hedfalk K, Larsson C, Mostad P, Chang C, Gustafsson L, Bill RM (2005) Design of improved membrane protein production experiments: quantitation of the host response. Protein Sci 14(7):1729–1740. doi:10.1110/ps.051435705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Midgett CR, Madden DR (2007) Breaking the bottleneck: eukaryotic membrane protein expression for high-resolution structural studies. J Struct Biol 160(3):265–274. doi:10.1016/j.jsb.2007.07.001

    Article  CAS  PubMed  Google Scholar 

  103. Wagner S, Klepsch MM, Schlegel S, Appel A, Draheim R, Tarry M, Hogbom M, van Wijk KJ, Slotboom DJ, Persson JO, de Gier JW (2008) Tuning Escherichia coli for membrane protein overexpression. Proc Natl Acad Sci U S A 105(38):14371–14376. doi:10.1073/pnas.0804090105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Freigassner M, Pichler H, Glieder A (2009) Tuning microbial hosts for membrane protein production. Microb Cell Fact 8:69. doi:10.1186/1475-2859-8-69

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Jamshad M, Lin YP, Knowles TJ, Parslow RA, Harris C, Wheatley M, Poyner DR, Bill RM, Thomas OR, Overduin M, Dafforn TR (2011) Surfactant-free purification of membrane proteins with intact native membrane environment. Biochem Soc Trans 39(3):813–818. doi:10.1042/BST0390813

    Article  CAS  PubMed  Google Scholar 

  106. Wang DN, Safferling M, Lemieux MJ, Griffith H, Chen Y, Li XD (2003) Practical aspects of overexpressing bacterial secondary membrane transporters for structural studies. Biochim Biophys Acta 1610(1):23–36

    Article  CAS  PubMed  Google Scholar 

  107. Bujard H, Gentz R, Lanzer M, Stueber D, Mueller M, Ibrahimi I, Haeuptle MT, Dobberstein B (1987) A T5 promoter-based transcription-translation system for the analysis of proteins in vitro and in vivo. Methods Enzymol 155:416–433

    Article  CAS  PubMed  Google Scholar 

  108. Sawasaki T, Ogasawara T, Morishita R, Endo Y (2002) A cell-free protein synthesis system for high-throughput proteomics. Proc Natl Acad Sci U S A 99(23):14652–14657. doi:10.1073/pnas.232580399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yokoyama S (2003) Protein expression systems for structural genomics and proteomics. Curr Opin Chem Biol 7(1):39–43

    Article  CAS  PubMed  Google Scholar 

  110. Spirin AS (2004) High-throughput cell-free systems for synthesis of functionally active proteins. Trends Biotechnol 22(10):538–545. doi:10.1016/j.tibtech.2004.08.012

    Article  CAS  PubMed  Google Scholar 

  111. Ishihara G, Goto M, Saeki M, Ito K, Hori T, Kigawa T, Shirouzu M, Yokoyama S (2005) Expression of G protein coupled receptors in a cell-free translational system using detergents and thioredoxin-fusion vectors. Protein Expr Purif 41(1):27–37. doi:10.1016/j.pep.2005.01.013

    Article  CAS  PubMed  Google Scholar 

  112. Katzen F, Chang G, Kudlicki W (2005) The past, present and future of cell-free protein synthesis. Trends Biotechnol 23(3):150–156. doi:10.1016/j.tibtech.2005.01.003

    Article  CAS  PubMed  Google Scholar 

  113. Endo Y, Sawasaki T (2006) Cell-free expression systems for eukaryotic protein production. Curr Opin Biotechnol 17(4):373–380. doi:10.1016/j.copbio.2006.06.009

    Article  CAS  PubMed  Google Scholar 

  114. Katzen F, Peterson TC, Kudlicki W (2009) Membrane protein expression: no cells required. Trends Biotechnol 27(8):455–460. doi:10.1016/j.tibtech.2009.05.005

    Article  CAS  PubMed  Google Scholar 

  115. Sorensen HP, Mortensen KK (2005) Advanced genetic strategies for recombinant protein expression in Escherichia coli. J Biotechnol 115(2):113–128. doi:10.1016/j.jbiotec.2004.08.004

    Article  CAS  PubMed  Google Scholar 

  116. Sheffield P, Garrard S, Derewenda Z (1999) Overcoming expression and purification problems of RhoGDI using a family of “parallel” expression vectors. Protein Expr Purif 15(1):34–39. doi:10.1006/prep.1998.1003

    Article  CAS  PubMed  Google Scholar 

  117. Takeshita S, Sato M, Toba M, Masahashi W, Hashimoto-Gotoh T (1987) High-copy-number and low-copy-number plasmid vectors for lacZ alpha-complementation and chloramphenicol- or kanamycin-resistance selection. Gene 61(1):63–74

    Article  CAS  PubMed  Google Scholar 

  118. Mandecki W, Hayden MA, Shallcross MA, Stotland E (1990) A totally synthetic plasmid for general cloning, gene expression and mutagenesis in Escherichia coli. Gene 94(1):103–107

    Article  CAS  PubMed  Google Scholar 

  119. Saida F, Uzan M, Odaert B, Bontems F (2006) Expression of highly toxic genes in E. coli: special strategies and genetic tools. Curr Protein Pept Sci 7(1):47–56

    Article  CAS  PubMed  Google Scholar 

  120. Wagner S, Bader ML, Drew D, de Gier JW (2006) Rationalizing membrane protein overexpression. Trends Biotechnol 24(8):364–371. doi:10.1016/j.tibtech.2006.06.008

    Article  CAS  PubMed  Google Scholar 

  121. Maurya SR, Chaturvedi D, Mahalakshmi R (2013) Modulating lipid dynamics and membrane fluidity to drive rapid folding of a transmembrane barrel. Sci Rep 3:1989. doi:10.1038/srep01989

    Article  PubMed  PubMed Central  Google Scholar 

  122. Maurya SR, Mahalakshmi R (2013) Modulation of human mitochondrial voltage-dependent anion channel 2 (hVDAC-2) structural stability by cysteine-assisted barrel-lipid interactions. J Biol Chem 288(35):25584–25592. doi:10.1074/jbc.M113.493692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Maurya SR, Mahalakshmi R (2014) Influence of protein-micelle ratios and cysteine residues on the kinetic stability and unfolding rates of human mitochondrial VDAC-2. PLoS One 9(1), e87701. doi:10.1371/journal.pone.0087701

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Ramon A, Senorale-Pose M, Marin M (2014) Inclusion bodies: not that bad. Front Microbiol 5:56. doi:10.3389/fmicb.2014.00056

    Article  PubMed  PubMed Central  Google Scholar 

  125. Middelberg AP (2002) Preparative protein refolding. Trends Biotechnol 20(10):437–443

    Article  CAS  PubMed  Google Scholar 

  126. Singh SM, Panda AK (2005) Solubilization and refolding of bacterial inclusion body proteins. J Biosci Bioeng 99(4):303–310. doi:10.1263/jbb.99.303

    Article  CAS  PubMed  Google Scholar 

  127. Peternel S, Komel R (2010) Isolation of biologically active nanomaterial (inclusion bodies) from bacterial cells. Microb Cell Fact 9:66. doi:10.1186/1475-2859-9-66

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Rodriguez-Carmona E, Cano-Garrido O, Seras-Franzoso J, Villaverde A, Garcia-Fruitos E (2010) Isolation of cell-free bacterial inclusion bodies. Microb Cell Fact 9:71. doi:10.1186/1475-2859-9-71

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Thakur KG, Jaiswal RK, Shukla JK, Praveena T, Gopal B (2010) Over-expression and purification strategies for recombinant multi-protein oligomers: a case study of Mycobacterium tuberculosis sigma/anti-sigma factor protein complexes. Protein Expr Purif 74(2):223–230. doi:10.1016/j.pep.2010.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Gatti-Lafranconi P, Natalello A, Ami D, Doglia SM, Lotti M (2011) Concepts and tools to exploit the potential of bacterial inclusion bodies in protein science and biotechnology. FEBS J 278(14):2408–2418. doi:10.1111/j.1742-4658.2011.08163.x

    Article  CAS  PubMed  Google Scholar 

  131. Garcia-Fruitos E, Vazquez E, Diez-Gil C, Corchero JL, Seras-Franzoso J, Ratera I, Veciana J, Villaverde A (2012) Bacterial inclusion bodies: making gold from waste. Trends Biotechnol 30(2):65–70. doi:10.1016/j.tibtech.2011.09.003

    Article  CAS  PubMed  Google Scholar 

  132. Peternel S (2013) Bacterial cell disruption: a crucial step in protein production. N Biotechnol 30(2):250–254. doi:10.1016/j.nbt.2011.09.005

    Article  CAS  PubMed  Google Scholar 

  133. Gupta A, Iyer BR, Chaturvedi D, Maurya SR, Mahalakshmi R (2015) Thermodynamic, structural and functional properties of membrane protein inclusion bodies are analogous to purified counterparts: case study from bacteria and humans. RSC Adv 5(2):1227–1234. doi:10.1039/c4ra11207e

    Article  CAS  Google Scholar 

  134. Mohanty AK, Wiener MC (2004) Membrane protein expression and production: effects of polyhistidine tag length and position. Protein Expr Purif 33(2):311–325

    Article  CAS  PubMed  Google Scholar 

  135. Liu W, Kamensky Y, Kakkar R, Foley E, Kulmacz RJ, Palmer G (2005) Purification and characterization of bovine adrenal cytochrome b561 expressed in insect and yeast cell systems. Protein Expr Purif 40(2):429–439. doi:10.1016/j.pep.2004.12.027

    Article  CAS  PubMed  Google Scholar 

  136. Smith SM (2011) Strategies for the purification of membrane proteins. Methods Mol Biol 681:485–496. doi:10.1007/978-1-60761-913-0_29

    Article  CAS  PubMed  Google Scholar 

  137. Colombini M (1989) Voltage gating in the mitochondrial channel, VDAC. J Membr Biol 111(2):103–111

    Article  CAS  PubMed  Google Scholar 

  138. Colombini M (2012) VDAC structure, selectivity, and dynamics. Biochim Biophys Acta 1818(6):1457–1465. doi:10.1016/j.bbamem.2011.12.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. McCommis KS, Baines CP (2012) The role of VDAC in cell death: friend or foe? Biochim Biophys Acta 1818(6):1444–1450. doi:10.1016/j.bbamem.2011.10.025

    Article  CAS  PubMed  Google Scholar 

  140. Messina A, Reina S, Guarino F, De Pinto V (2012) VDAC isoforms in mammals. Biochim Biophys Acta 1818(6):1466–1476. doi:10.1016/j.bbamem.2011.10.005

    Article  CAS  PubMed  Google Scholar 

  141. Raghavan A, Sheiko T, Graham BH, Craigen WJ (2012) Voltage-dependant anion channels: novel insights into isoform function through genetic models. Biochim Biophys Acta 1818(6):1477–1485. doi:10.1016/j.bbamem.2011.10.019

    Article  CAS  PubMed  Google Scholar 

  142. Shoshan-Barmatz V, Ben-Hail D (2012) VDAC, a multi-functional mitochondrial protein as a pharmacological target. Mitochondrion 12(1):24–34. doi:10.1016/j.mito.2011.04.001

    Article  CAS  PubMed  Google Scholar 

  143. De Pinto V, Reina S, Gupta A, Messina A, Mahalakshmi R (2016) Role of cysteines in mammalian VDAC isoforms’ function. Biochim Biophys Acta. doi:10.1016/j.bbabio.2016.02.020

    Google Scholar 

  144. Diane Johnson HL (1967) Isolation of liver or kidney mitochondria. Methods Enzymol 10:94–96

    Article  Google Scholar 

  145. Linden M, Gellerfors P, Nelson BD (1982) Purification of a protein having pore forming activity from the rat liver mitochondrial outer membrane. Biochem J 208(1):77–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Palmieri F, De Pinto V (1989) Purification and properties of the voltage-dependent anion channel of the outer mitochondrial membrane. J Bioenerg Biomembr 21(4):417–425

    Article  CAS  PubMed  Google Scholar 

  147. Hiller S, Abramson J, Mannella C, Wagner G, Zeth K (2010) The 3D structures of VDAC represent a native conformation. Trends Biochem Sci 35(9):514–521. doi:10.1016/j.tibs.2010.03.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Arora A, Rinehart D, Szabo G, Tamm LK (2000) Refolded outer membrane protein A of Escherichia coli forms ion channels with two conductance states in planar lipid bilayers. J Biol Chem 275(3):1594–1600

    Article  CAS  PubMed  Google Scholar 

  149. Hingorani KS, Gierasch LM (2014) Comparing protein folding in vitro and in vivo: foldability meets the fitness challenge. Curr Opin Struct Biol 24:81–90. doi:10.1016/j.sbi.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  150. Reina S, Checchetto V, Saletti R, Gupta A, Chaturvedi D, Guardiani C, Guarino F, Scorciapino MA, Magri A, Foti S, Ceccarelli M, Messina AA, Mahalakshmi R, Szabo I, De Pinto V (2016) VDAC3 as a sensor of oxidative state of the intermembrane space of mitochondria: the putative role of cysteine residue modifications. Oncotarget 7(3):2249–2268. doi:10.18632/oncotarget.6850

    Google Scholar 

  151. Chaturvedi D, Mahalakshmi R (2013) Methionine mutations of outer membrane protein X influence structural stability and beta-barrel unfolding. PLoS One 8(11), e79351. doi:10.1371/journal.pone.0079351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Gupta A, Zadafiya P, Mahalakshmi R (2014) Differential contribution of tryptophans to the folding and stability of the attachment invasion locus transmembrane beta-barrel from Yersinia pestis. Sci Rep 4:6508. doi:10.1038/srep06508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Iyer BR, Mahalakshmi R (2015) Residue-dependent thermodynamic cost and barrel plasticity balances activity in the PhoPQ-activated enzyme PagP of Salmonella typhimurium. Biochemistry 54(37):5712–5722. doi:10.1021/acs.biochem.5b00543

    Article  CAS  PubMed  Google Scholar 

  154. Hartl FU, Hayer-Hartl M (2009) Converging concepts of protein folding in vitro and in vivo. Nat Struct Mol Biol 16(6):574–581. doi:10.1038/nsmb.1591

    Article  CAS  PubMed  Google Scholar 

  155. Gessmann D, Chung YH, Danoff EJ, Plummer AM, Sandlin CW, Zaccai NR, Fleming KG (2014) Outer membrane beta-barrel protein folding is physically controlled by periplasmic lipid head groups and BamA. Proc Natl Acad Sci U S A 111(16):5878–5883. doi:10.1073/pnas.1322473111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. McMorran LM, Brockwell DJ, Radford SE (2014) Mechanistic studies of the biogenesis and folding of outer membrane proteins in vitro and in vivo: what have we learned to date? Arch Biochem Biophys 564:265–280. doi:10.1016/j.abb.2014.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Sandlin CW, Zaccai NR, Fleming KG (2015) Skp trimer formation is insensitive to salts in the physiological range. Biochemistry 54(48):7059–7062. doi:10.1021/acs.biochem.5b00806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Thoma J, Burmann BM, Hiller S, Muller DJ (2015) Impact of holdase chaperones Skp and SurA on the folding of beta-barrel outer-membrane proteins. Nat Struct Mol Biol 22(10):795–802. doi:10.1038/nsmb.3087

    Article  CAS  PubMed  Google Scholar 

  159. Rudolph R, Lilie H (1996) In vitro folding of inclusion body proteins. FASEB J 10(1):49–56

    CAS  PubMed  Google Scholar 

  160. Li M, Su ZG, Janson JC (2004) In vitro protein refolding by chromatographic procedures. Protein Expr Purif 33(1):1–10. doi:10.1016/j.pep.2003.08.023

    Article  PubMed  CAS  Google Scholar 

  161. Huysmans GH, Radford SE, Brockwell DJ, Baldwin SA (2007) The N-terminal helix is a post-assembly clamp in the bacterial outer membrane protein PagP. J Mol Biol 373(3):529–540. doi:10.1016/j.jmb.2007.07.072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Stanley AM, Fleming KG (2008) The process of folding proteins into membranes: challenges and progress. Arch Biochem Biophys 469(1):46–66. doi:10.1016/j.abb.2007.09.024

    Article  CAS  PubMed  Google Scholar 

  163. Alibolandi M, Mirzahoseini H (2011) Chemical assistance in refolding of bacterial inclusion bodies. Biochem Res Int 2011:631607. doi:10.1155/2011/631607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Rath A, Deber CM (2012) Protein structure in membrane domains. Annu Rev Biophys 41:135–155. doi:10.1146/annurev-biophys-050511-102310

    Article  CAS  PubMed  Google Scholar 

  165. Serebryany E, Zhu GA, Yan EC (2012) Artificial membrane-like environments for in vitro studies of purified G-protein coupled receptors. Biochim Biophys Acta 1818(2):225–233. doi:10.1016/j.bbamem.2011.07.047

    Article  CAS  PubMed  Google Scholar 

  166. Dekker N, Merck K, Tommassen J, Verheij HM (1995) In vitro folding of Escherichia coli outer-membrane phospholipase A. Eur J Biochem 232(1):214–219

    Article  CAS  PubMed  Google Scholar 

  167. Surrey T, Schmid A, Jahnig F (1996) Folding and membrane insertion of the trimeric beta-barrel protein OmpF. Biochemistry 35(7):2283–2288. doi:10.1021/bi951216u

    Article  CAS  PubMed  Google Scholar 

  168. Vogt J, Schulz GE (1999) The structure of the outer membrane protein OmpX from Escherichia coli reveals possible mechanisms of virulence. Structure 7(10):1301–1309

    Article  CAS  PubMed  Google Scholar 

  169. Albrecht R, Zeth K, Soding J, Lupas A, Linke D (2006) Expression, crystallization and preliminary X-ray crystallographic studies of the outer membrane protein OmpW from Escherichia coli. Acta Crystallogr Sect F Struct Biol Cryst Commun 62(Pt 4):415–418. doi:10.1107/S1744309106010190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Anbazhagan V, Qu J, Kleinschmidt JH, Marsh D (2008) Incorporation of outer membrane protein OmpG in lipid membranes: protein-lipid interactions and beta-barrel orientation. Biochemistry 47(23):6189–6198. doi:10.1021/bi800203g

    Article  CAS  PubMed  Google Scholar 

  171. Huysmans GH, Baldwin SA, Brockwell DJ, Radford SE (2010) The transition state for folding of an outer membrane protein. Proc Natl Acad Sci U S A 107(9):4099–4104. doi:10.1073/pnas.0911904107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mager F, Gessmann D, Nussberger S, Zeth K (2011) Functional refolding and characterization of two Tom40 isoforms from human mitochondria. J Membr Biol 242(1):11–21. doi:10.1007/s00232-011-9372-8

    Article  CAS  PubMed  Google Scholar 

  173. Yamashita S, Lukacik P, Barnard TJ, Noinaj N, Felek S, Tsang TM, Krukonis ES, Hinnebusch BJ, Buchanan SK (2011) Structural insights into Ail-mediated adhesion in Yersinia pestis. Structure 19(11):1672–1682. doi:10.1016/j.str.2011.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Barnard TJ, Gumbart J, Peterson JH, Noinaj N, Easley NC, Dautin N, Kuszak AJ, Tajkhorshid E, Bernstein HD, Buchanan SK (2012) Molecular basis for the activation of a catalytic asparagine residue in a self-cleaving bacterial autotransporter. J Mol Biol 415(1):128–142. doi:10.1016/j.jmb.2011.10.049

    Article  CAS  PubMed  Google Scholar 

  175. Colombini M (2009) The published 3D structure of the VDAC channel: native or not? Trends Biochem Sci 34(8):382–389. doi:10.1016/j.tibs.2009.05.001

    Article  CAS  PubMed  Google Scholar 

  176. Colombini M, Mannella CA (2012) VDAC, the early days. Biochim Biophys Acta 1818(6):1438–1443. doi:10.1016/j.bbamem.2011.11.014

    Article  CAS  PubMed  Google Scholar 

  177. Maurya SR, Mahalakshmi R (2015) N-helix and cysteines inter-regulate human mitochondrial VDAC-2 function and biochemistry. J Biol Chem 290(51):30240–30252. doi:10.1074/jbc.M115.693978

    CAS  PubMed  PubMed Central  Google Scholar 

  178. Arndt C, Koristka S, Bartsch H, Bachmann M (2012) Native polyacrylamide gels. Methods Mol Biol 869:49–53. doi:10.1007/978-1-61779-821-4_5

    Article  CAS  PubMed  Google Scholar 

  179. Wittig I, Braun HP, Schagger H (2006) Blue native PAGE. Nat Protoc 1(1):418–428. doi:10.1038/nprot.2006.62

    Article  CAS  PubMed  Google Scholar 

  180. Rath A, Cunningham F, Deber CM (2013) Acrylamide concentration determines the direction and magnitude of helical membrane protein gel shifts. Proc Natl Acad Sci U S A 110(39):15668–15673. doi:10.1073/pnas.1311305110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Rath A, Glibowicka M, Nadeau VG, Chen G, Deber CM (2009) Detergent binding explains anomalous SDS-PAGE migration of membrane proteins. Proc Natl Acad Sci U S A 106(6):1760–1765. doi:10.1073/pnas.0813167106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Dunker AK, Kenyon AJ (1976) Mobility of sodium dodecyl sulphate – protein complexes. Biochem J 153(2):191–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Burgess NK, Dao TP, Stanley AM, Fleming KG (2008) Beta-barrel proteins that reside in the Escherichia coli outer membrane in vivo demonstrate varied folding behavior in vitro. J Biol Chem 283(39):26748–26758. doi:10.1074/jbc.M802754200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Kleinschmidt JH, Tamm LK (1996) Folding intermediates of a beta-barrel membrane protein. Kinetic evidence for a multi-step membrane insertion mechanism. Biochemistry 35(40):12993–13000. doi:10.1021/bi961478b

    Article  CAS  PubMed  Google Scholar 

  185. Tamm LK, Hong H, Liang B (2004) Folding and assembly of beta-barrel membrane proteins. Biochim Biophys Acta 1666(1-2):250–263. doi:10.1016/j.bbamem.2004.06.011

    Article  CAS  PubMed  Google Scholar 

  186. Bulieris PV, Behrens S, Holst O, Kleinschmidt JH (2003) Folding and insertion of the outer membrane protein OmpA is assisted by the chaperone Skp and by lipopolysaccharide. J Biol Chem 278(11):9092–9099. doi:10.1074/jbc.M211177200

    Article  CAS  PubMed  Google Scholar 

  187. Kleinschmidt JH (2006) Folding kinetics of the outer membrane proteins OmpA and FomA into phospholipid bilayers. Chem Phys Lipids 141(1-2):30–47. doi:10.1016/j.chemphyslip.2006.02.004

    Article  CAS  PubMed  Google Scholar 

  188. Roman EA, Gonzalez Flecha FL (2014) Kinetics and thermodynamics of membrane protein folding. Biomolecules 4(1):354–373. doi:10.3390/biom4010354

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Schagger H, von Jagow G (1987) Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166(2):368–379

    Article  CAS  PubMed  Google Scholar 

  190. McMorran LM, Bartlett AI, Huysmans GH, Radford SE, Brockwell DJ (2013) Dissecting the effects of periplasmic chaperones on the in vitro folding of the outer membrane protein PagP. J Mol Biol 425(17):3178–3191. doi:10.1016/j.jmb.2013.06.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Pocanschi CL, Popot JL, Kleinschmidt JH (2013) Folding and stability of outer membrane protein A (OmpA) from Escherichia coli in an amphipathic polymer, amphipol A8-35. Eur Biophys J 42(2-3):103–118. doi:10.1007/s00249-013-0887-z

    Article  CAS  PubMed  Google Scholar 

  192. Dewald AH, Hodges JC, Columbus L (2011) Physical determinants of beta-barrel membrane protein folding in lipid vesicles. Biophys J 100(9):2131–2140. doi:10.1016/j.bpj.2011.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Khan MA, Neale C, Michaux C, Pomes R, Prive GG, Woody RW, Bishop RE (2007) Gauging a hydrocarbon ruler by an intrinsic exciton probe. Biochemistry 46(15):4565–4579. doi:10.1021/bi602526k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Mogensen JE, Tapadar D, Schmidt MA, Otzen DE (2005) Barriers to folding of the transmembrane domain of the Escherichia coli autotransporter adhesin involved in diffuse adherence. Biochemistry 44(11):4533–4545. doi:10.1021/bi0475121

    Article  CAS  PubMed  Google Scholar 

  195. Surrey T, Jahnig F (1995) Kinetics of folding and membrane insertion of a beta-barrel membrane protein. J Biol Chem 270(47):28199–28203

    Article  CAS  PubMed  Google Scholar 

  196. Schlebach JP, Kim MS, Joh NH, Bowie JU, Park C (2011) Probing membrane protein unfolding with pulse proteolysis. J Mol Biol 406(4):545–551. doi:10.1016/j.jmb.2010.12.018

    Article  CAS  PubMed  Google Scholar 

  197. Okada J, Koga Y, Takano K, Kanaya S (2012) Slow unfolding pathway of hyperthermophilic Tk-RNase H2 examined by pulse proteolysis using the stable protease Tk-subtilisin. Biochemistry 51(45):9178–9191. doi:10.1021/bi300973n

    Article  CAS  PubMed  Google Scholar 

  198. Missiakas D, Betton JM, Chaffotte A, Minard P, Yon JM (1992) Kinetic studies of the refolding of yeast phosphoglycerate kinase: comparison with the isolated engineered domains. Protein Sci 1(11):1485–1493. doi:10.1002/pro.5560011110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Lang K, Schmid FX (1986) Use of a trypsin-pulse method to study the refolding pathway of ribonuclease. Eur J Biochem 159(2):275–281

    Article  CAS  PubMed  Google Scholar 

  200. Park C, Marqusee S (2005) Pulse proteolysis: a simple method for quantitative determination of protein stability and ligand binding. Nat Methods 2(3):207–212. doi:10.1038/nmeth740

    Article  CAS  PubMed  Google Scholar 

  201. Li HM, Moore T, Keegstra K (1991) Targeting of proteins to the outer envelope membrane uses a different pathway than transport into chloroplasts. Plant Cell 3(7):709–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Na YR, Park C (2009) Investigating protein unfolding kinetics by pulse proteolysis. Protein Sci 18(2):268–276. doi:10.1002/pro.29

    Article  CAS  PubMed  Google Scholar 

  203. Chang Y, Park C (2009) Mapping transient partial unfolding by protein engineering and native-state proteolysis. J Mol Biol 393(2):543–556. doi:10.1016/j.jmb.2009.08.006

    Article  CAS  PubMed  Google Scholar 

  204. Kim MS, Song J, Park C (2009) Determining protein stability in cell lysates by pulse proteolysis and Western blotting. Protein Sci 18(5):1051–1059. doi:10.1002/pro.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Guo R, Gaffney K, Yang Z, Kim M, Sungsuwan S, Huang X, Hubbell WL, Hong H (2016) Steric trapping reveals a cooperativity network in the intramembrane protease GlpG. Nat Chem Biol 12(5):353–360. doi:10.1038/nchembio.2048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kelly SM, Price NC (2000) The use of circular dichroism in the investigation of protein structure and function. Curr Protein Pept Sci 1(4):349–384

    Article  CAS  PubMed  Google Scholar 

  207. Wallace BA, Lees JG, Orry AJ, Lobley A, Janes RW (2003) Analyses of circular dichroism spectra of membrane proteins. Protein Sci 12(4):875–884. doi:10.1110/ps.0229603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Sreerama N, Woody RW (2004) On the analysis of membrane protein circular dichroism spectra. Protein Sci 13(1):100–112. doi:10.1110/ps.03258404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Khan MA, Moktar J, Mott PJ, Bishop RE (2010) A thiolate anion buried within the hydrocarbon ruler perturbs PagP lipid acyl chain selection. Biochemistry 49(11):2368–2379. doi:10.1021/bi901669q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Zoldak G, Zubrik A, Musatov A, Stupak M, Sedlak E (2004) Irreversible thermal denaturation of glucose oxidase from Aspergillus niger is the transition to the denatured state with residual structure. J Biol Chem 279(46):47601–47609. doi:10.1074/jbc.M406883200

    Article  CAS  PubMed  Google Scholar 

  211. Allen B, Blum M, Cunningham A, Tu GC, Hofmann T (1990) A ligand-induced, temperature-dependent conformational change in penicillopepsin. Evidence from nonlinear Arrhenius plots and from circular dichroism studies. J Biol Chem 265(9):5060–5065

    CAS  PubMed  Google Scholar 

  212. Chen Y, Mao H, Zhang X, Gong Y, Zhao N (1999) Thermal conformational changes of bovine fibrinogen by differential scanning calorimetry and circular dichroism. Int J Biol Macromol 26(2-3):129–134

    Article  CAS  PubMed  Google Scholar 

  213. Ahn VE, Lo EI, Engel CK, Chen L, Hwang PM, Kay LE, Bishop RE, Prive GG (2004) A hydrocarbon ruler measures palmitate in the enzymatic acylation of endotoxin. EMBO J 23(15):2931–2941. doi:10.1038/sj.emboj.7600320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Hwang PM, Bishop RE, Kay LE (2004) The integral membrane enzyme PagP alternates between two dynamically distinct states. Proc Natl Acad Sci U S A 101(26):9618–9623. doi:10.1073/pnas.0402324101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Moon CP, Zaccai NR, Fleming PJ, Gessmann D, Fleming KG (2013) Membrane protein thermodynamic stability may serve as the energy sink for sorting in the periplasm. Proc Natl Acad Sci U S A 110(11):4285–4290. doi:10.1073/pnas.1212527110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Huysmans GH, Radford SE, Baldwin SA, Brockwell DJ (2012) Malleability of the folding mechanism of the outer membrane protein PagP: parallel pathways and the effect of membrane elasticity. J Mol Biol 416(3):453–464. doi:10.1016/j.jmb.2011.12.039

    Article  CAS  PubMed  Google Scholar 

  217. Chaturvedi D, Mahalakshmi R (2014) Juxtamembrane tryptophans have distinct roles in defining the OmpX barrel-micelle boundary and facilitating protein-micelle association. FEBS Lett 588(23):4464–4471. doi:10.1016/j.febslet.2014.10.017

    Article  CAS  PubMed  Google Scholar 

  218. Kleinschmidt JH, Tamm LK (1999) Time-resolved distance determination by tryptophan fluorescence quenching: probing intermediates in membrane protein folding. Biochemistry 38(16):4996–5005. doi:10.1021/bi9824644

    Article  CAS  PubMed  Google Scholar 

  219. Pattnaik BR, Ghosh S, Rajeswari MR (1997) Selective excitation of tryptophans in OmpF: a fluorescence emission study. Biochem Mol Biol Int 42(1):173–181

    CAS  PubMed  Google Scholar 

  220. Lovelle M, Mach T, Mahendran KR, Weingart H, Winterhalter M, Gameiro P (2011) Interaction of cephalosporins with outer membrane channels of Escherichia coli. Revealing binding by fluorescence quenching and ion conductance fluctuations. Phys Chem Chem Phys 13(4):1521–1530. doi:10.1039/c0cp00969e

    Article  CAS  PubMed  Google Scholar 

  221. Moon CP, Fleming KG (2011) Using tryptophan fluorescence to measure the stability of membrane proteins folded in liposomes. Methods Enzymol 492:189–211. doi:10.1016/B978-0-12-381268-1.00018-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Schulz GE (2002) The structure of bacterial outer membrane proteins. Biochim Biophys Acta 1565(2):308–317

    Article  CAS  PubMed  Google Scholar 

  223. Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, London

    Book  Google Scholar 

  224. Kang G, Lopez-Pena I, Oklejas V, Gary CS, Cao W, Kim JE (2012) Forster resonance energy transfer as a probe of membrane protein folding. Biochim Biophys Acta 1818(2):154–161. doi:10.1016/j.bbamem.2011.08.029

    Article  CAS  PubMed  Google Scholar 

  225. Lella M, Kamilla S, Jain V, Mahalakshmi R (2016) Molecular mechanism of holin transmembrane domain I in pore formation and bacterial cell death. ACS Chem Biol 11(4):910–920. doi:10.1021/acschembio.5b00875

    Article  CAS  PubMed  Google Scholar 

  226. Giepmans BN, Adams SR, Ellisman MH, Tsien RY (2006) The fluorescent toolbox for assessing protein location and function. Science 312(5771):217–224. doi:10.1126/science.1124618

    Article  CAS  PubMed  Google Scholar 

  227. O’Hare HM, Johnsson K, Gautier A (2007) Chemical probes shed light on protein function. Curr Opin Struct Biol 17(4):488–494. doi:10.1016/j.sbi.2007.07.005

    Article  PubMed  CAS  Google Scholar 

  228. Knopp MM, Lobmann K, Elder DP, Rades T, Holm R (2015) Recent advances and potential applications of modulated differential scanning calorimetry (mDSC) in drug development. Eur J Pharm Sci. doi:10.1016/j.ejps.2015.12.024

    PubMed  Google Scholar 

  229. Olsen CM, Shikiya R, Ganugula R, Reiling-Steffensmeier C, Khutsishvili I, Johnson SE, Marky LA (2016) Application of differential scanning calorimetry to measure the differential binding of ions, water and protons in the unfolding of DNA molecules. Biochim Biophys Acta 1860(5):990–998. doi:10.1016/j.bbagen.2015.10.002

    Article  CAS  PubMed  Google Scholar 

  230. Spink CH (2015) The deconvolution of differential scanning calorimetry unfolding transitions. Methods 76:78–86. doi:10.1016/j.ymeth.2014.12.001

    Article  CAS  PubMed  Google Scholar 

  231. Kim NA, Jin JH, Kim KH, Lim DG, Cheong H, Kim YH, Ju W, Kim SC, Jeong SH (2016) Investigation of early and advanced stages in ovarian cancer using human plasma by differential scanning calorimetry and mass spectrometry. Arch Pharm Res. doi:10.1007/s12272-016-0722-z

    Google Scholar 

  232. Brandes N, Welzel PB, Werner C, Kroh LW (2006) Adsorption-induced conformational changes of proteins onto ceramic particles: differential scanning calorimetry and FTIR analysis. J Colloid Interface Sci 299(1):56–69. doi:10.1016/j.jcis.2006.01.065

    Article  CAS  PubMed  Google Scholar 

  233. Vermeer AW, Norde W (2000) The thermal stability of immunoglobulin: unfolding and aggregation of a multi-domain protein. Biophys J 78(1):394–404. doi:10.1016/S0006-3495(00)76602-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Lepock JR, Frey HE, Inniss WE (1990) Thermal analysis of bacteria by differential scanning calorimetry: relationship of protein denaturation in situ to maximum growth temperature. Biochim Biophys Acta 1055(1):19–26

    Article  CAS  PubMed  Google Scholar 

  235. Lepock JR, Frey HE, Rodahl AM, Kruuv J (1988) Thermal analysis of CHL V79 cells using differential scanning calorimetry: implications for hyperthermic cell killing and the heat shock response. J Cell Physiol 137(1):14–24. doi:10.1002/jcp.1041370103

    Article  CAS  PubMed  Google Scholar 

  236. Joanne P, Galanth C, Goasdoue N, Nicolas P, Sagan S, Lavielle S, Chassaing G, El Amri C, Alves ID (2009) Lipid reorganization induced by membrane-active peptides probed using differential scanning calorimetry. Biochim Biophys Acta 1788(9):1772–1781. doi:10.1016/j.bbamem.2009.05.001

    Article  CAS  PubMed  Google Scholar 

  237. Cinelli S, Onori G, Zuzzi S, Bordi F, Cametti C, Sennato S, Diociaiuti M (2007) Properties of mixed DOTAP-DPPC bilayer membranes as reported by differential scanning calorimetry and dynamic light scattering measurements. J Phys Chem B 111(33):10032–10039. doi:10.1021/jp071722g

    Article  CAS  PubMed  Google Scholar 

  238. Mabrey S, Sturtevant JM (1976) Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry. Proc Natl Acad Sci U S A 73(11):3862–3866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. Ortiz A, Aranda FJ, Gomez-Fernandez JC (1987) A differential scanning calorimetry study of the interaction of alpha-tocopherol with mixtures of phospholipids. Biochim Biophys Acta 898(2):214–222

    Article  CAS  PubMed  Google Scholar 

  240. Sanchez-Ruiz JM (1992) Theoretical analysis of Lumry-Eyring models in differential scanning calorimetry. Biophys J 61(4):921–935. doi:10.1016/S0006-3495(92)81899-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Chapman D, Urbina J (1974) Biomembrane phase transitions. Studies of lipid-water systems using differential scanning calorimetry. J Biol Chem 249(8):2512–2521

    CAS  PubMed  Google Scholar 

  242. Sanchez-Ruiz JM, Lopez-Lacomba JL, Cortijo M, Mateo PL (1988) Differential scanning calorimetry of the irreversible thermal denaturation of thermolysin. Biochemistry 27(5):1648–1652

    Article  CAS  PubMed  Google Scholar 

  243. Sanchez-Ruiz JM (1995) Differential scanning calorimetry of proteins. In: Proteins: structure, function, and engineering. Series subcellular biochemistry, vol 24, pp 133–176

    Google Scholar 

  244. Beatriz Ibarra-Molero JMS-R (2006) Differential scanning calorimetry of proteins: an overview and some recent developments. In: Advanced techniques in biophysics. Springer series in biophysics, vol 10, pp 27–48

    Google Scholar 

  245. Jelesarov I, Bosshard HR (1999) Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J Mol Recognit 12(1):3–18. doi:10.1002/(SICI)1099-1352(199901/02)12:1<3::AID-JMR441>3.0.CO;2-6

    Article  CAS  PubMed  Google Scholar 

  246. Brandts JF, Lin LN (1990) Study of strong to ultratight protein interactions using differential scanning calorimetry. Biochemistry 29(29):6927–6940

    Article  CAS  PubMed  Google Scholar 

  247. Blagoev B, Kratchmarova I, Ong SE, Nielsen M, Foster LJ, Mann M (2003) A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat Biotechnol 21(3):315–318. doi:10.1038/nbt790

    Article  CAS  PubMed  Google Scholar 

  248. Wu CC, Yates JR 3rd (2003) The application of mass spectrometry to membrane proteomics. Nat Biotechnol 21(3):262–267. doi:10.1038/nbt0303-262

    Article  CAS  PubMed  Google Scholar 

  249. Eichacker LA, Granvogl B, Mirus O, Muller BC, Miess C, Schleiff E (2004) Hiding behind hydrophobicity. Transmembrane segments in mass spectrometry. J Biol Chem 279(49):50915–50922. doi:10.1074/jbc.M405875200

    Article  CAS  PubMed  Google Scholar 

  250. Savas JN, Stein BD, Wu CC, Yates JR 3rd (2011) Mass spectrometry accelerates membrane protein analysis. Trends Biochem Sci 36(7):388–396. doi:10.1016/j.tibs.2011.04.005

    CAS  PubMed  PubMed Central  Google Scholar 

  251. Cravatt BF, Simon GM, Yates JR 3rd (2007) The biological impact of mass-spectrometry-based proteomics. Nature 450(7172):991–1000. doi:10.1038/nature06525

    Article  CAS  PubMed  Google Scholar 

  252. Barrera NP, Isaacson SC, Zhou M, Bavro VN, Welch A, Schaedler TA, Seeger MA, Miguel RN, Korkhov VM, van Veen HW, Venter H, Walmsley AR, Tate CG, Robinson CV (2009) Mass spectrometry of membrane transporters reveals subunit stoichiometry and interactions. Nat Methods 6(8):585–587. doi:10.1038/nmeth.1347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Sharon M (2010) How far can we go with structural mass spectrometry of protein complexes? J Am Soc Mass Spectrom 21(4):487–500. doi:10.1016/j.jasms.2009.12.017

    Article  CAS  PubMed  Google Scholar 

  254. Kirshenbaum N, Michaelevski I, Sharon M (2010) Analyzing large protein complexes by structural mass spectrometry. J Vis Exp (40). doi:10.3791/1954

  255. Leney AC, McMorran LM, Radford SE, Ashcroft AE (2012) Amphipathic polymers enable the study of functional membrane proteins in the gas phase. Anal Chem 84(22):9841–9847. doi:10.1021/ac302223s

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Schey KL, Grey AC, Nicklay JJ (2013) Mass spectrometry of membrane proteins: a focus on aquaporins. Biochemistry 52(22):3807–3817. doi:10.1021/bi301604j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Laganowsky A, Reading E, Hopper JT, Robinson CV (2013) Mass spectrometry of intact membrane protein complexes. Nat Protoc 8(4):639–651. doi:10.1038/nprot.2013.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  258. Borysik AJ, Robinson CV (2012) Formation and dissociation processes of gas-phase detergent micelles. Langmuir 28(18):7160–7167. doi:10.1021/la3002866

    Article  CAS  PubMed  Google Scholar 

  259. Barrera NP, Robinson CV (2011) Advances in the mass spectrometry of membrane proteins: from individual proteins to intact complexes. Annu Rev Biochem 80:247–271. doi:10.1146/annurev-biochem-062309-093307

    Article  CAS  PubMed  Google Scholar 

  260. Landreh M, Robinson CV (2015) A new window into the molecular physiology of membrane proteins. J Physiol 593(2):355–362. doi:10.1113/jphysiol.2014.283150

    Article  CAS  PubMed  Google Scholar 

  261. Barrera NP, Zhou M, Robinson CV (2013) The role of lipids in defining membrane protein interactions: insights from mass spectrometry. Trends Cell Biol 23(1):1–8. doi:10.1016/j.tcb.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  262. Plesniak LA, Mahalakshmi R, Rypien C, Yang Y, Racic J, Marassi FM (2011) Expression, refolding, and initial structural characterization of the Y. pestis Ail outer membrane protein in lipids. Biochim Biophys Acta 1808(1):482–489. doi:10.1016/j.bbamem.2010.09.017

    Article  CAS  PubMed  Google Scholar 

  263. Speers AE, Blackler AR, Wu CC (2007) Shotgun analysis of integral membrane proteins facilitated by elevated temperature. Anal Chem 79(12):4613–4620. doi:10.1021/ac0700225

    Article  CAS  PubMed  Google Scholar 

  264. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1(6):2856–2860. doi:10.1038/nprot.2006.468

    Article  CAS  PubMed  Google Scholar 

  265. Okazaki M, Kurabayashi K, Asanuma M, Saito Y, Dodo K, Sodeoka M (2015) VDAC3 gating is activated by suppression of disulfide-bond formation between the N-terminal region and the bottom of the pore. Biochim Biophys Acta 1848(12):3188–3196. doi:10.1016/j.bbamem.2015.09.017

    Article  CAS  PubMed  Google Scholar 

  266. Hamill OP, Marty A, Neher E, Sakmann B, Sigworth FJ (1981) Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch 391(2):85–100

    Article  CAS  PubMed  Google Scholar 

  267. Dietrich D, Clusmann H, Kral T (2002) Improved hybrid clamp: resolution of tail currents following single action potentials. J Neurosci Methods 116(1):55–63

    Article  PubMed  Google Scholar 

  268. Pottosin I, Dobrovinskaya O (2015) Ion channels in native chloroplast membranes: challenges and potential for direct patch-clamp studies. Front Physiol 6:396. doi:10.3389/fphys.2015.00396

    Article  PubMed  PubMed Central  Google Scholar 

  269. Gutsmann T, Heimburg T, Keyser U, Mahendran KR, Winterhalter M (2015) Protein reconstitution into freestanding planar lipid membranes for electrophysiological characterization. Nat Protoc 10(1):188–198. doi:10.1038/nprot.2015.003

    Article  PubMed  Google Scholar 

  270. Ries RS, Choi H, Blunck R, Bezanilla F, Heath JR (2004) Black lipid membranes: visualizing the structure, dynamics, and substrate dependence of membranes. J Phys Chem B 108(41):16040–16049. doi:10.1021/jp048098h

    Article  CAS  Google Scholar 

  271. Basle A, Iyer R, Delcour AH (2004) Subconductance states in OmpF gating. Biochim Biophys Acta 1664(1):100–107. doi:10.1016/j.bbamem.2004.04.009

    Article  CAS  PubMed  Google Scholar 

  272. Kreir M, Farre C, Beckler M, George M, Fertig N (2008) Rapid screening of membrane protein activity: electrophysiological analysis of OmpF reconstituted in proteoliposomes. Lab Chip 8(4):587–595. doi:10.1039/b713982a

    Article  CAS  PubMed  Google Scholar 

  273. Basle A, Qutub R, Mehrazin M, Wibbenmeyer J, Delcour AH (2004) Deletions of single extracellular loops affect pH sensitivity, but not voltage dependence, of the Escherichia coli porin OmpF. Proteing Eng Des Sel 17(9):665–672. doi:10.1093/protein/gzh078

    Article  CAS  Google Scholar 

  274. Zakharian E, Reusch RN (2003) Outer membrane protein A of Escherichia coli forms temperature-sensitive channels in planar lipid bilayers. FEBS Lett 555(2):229–235

    Article  CAS  PubMed  Google Scholar 

  275. Arnold T, Poynor M, Nussberger S, Lupas AN, Linke D (2007) Gene duplication of the eight-stranded beta-barrel OmpX produces a functional pore: a scenario for the evolution of transmembrane beta-barrels. J Mol Biol 366(4):1174–1184. doi:10.1016/j.jmb.2006.12.029

    Article  CAS  PubMed  Google Scholar 

  276. Kuszak AJ, Jacobs D, Gurnev PA, Shiota T, Louis JM, Lithgow T, Bezrukov SM, Rostovtseva TK, Buchanan SK (2015) Evidence of distinct channel conformations and substrate binding affinities for the mitochondrial outer membrane protein translocase pore Tom40. J Biol Chem 290(43):26204–26217. doi:10.1074/jbc.M115.642173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Noskov SY, Rostovtseva TK, Chamberlin AC, Teijido O, Jiang W, Bezrukov SM (2016) Current state of theoretical and experimental studies of the voltage-dependent anion channel (VDAC). Biochim Biophys Acta. doi:10.1016/j.bbamem.2016.02.026

    Google Scholar 

  278. Hong M, Zhang Y, Hu F (2012) Membrane protein structure and dynamics from NMR spectroscopy. Annu Rev Phys Chem 63:1–24. doi:10.1146/annurev-physchem-032511-143731

    Article  CAS  PubMed  Google Scholar 

  279. Wang S, Ladizhansky V (2014) Recent advances in magic angle spinning solid state NMR of membrane proteins. Prog Nucl Magn Reson Spectrosc 82:1–26. doi:10.1016/j.pnmrs.2014.07.001

    Article  PubMed  CAS  Google Scholar 

  280. Das N, Murray DT, Cross TA (2013) Lipid bilayer preparations of membrane proteins for oriented and magic-angle spinning solid-state NMR samples. Nat Protoc 8(11):2256–2270. doi:10.1038/nprot.2013.129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  281. Bechinger B, Resende JM, Aisenbrey C (2011) The structural and topological analysis of membrane-associated polypeptides by oriented solid-state NMR spectroscopy: established concepts and novel developments. Biophys Chem 153(2-3):115–125. doi:10.1016/j.bpc.2010.11.002

    Article  CAS  PubMed  Google Scholar 

  282. Gong XM, Franzin CM, Thai K, Yu J, Marassi FM (2007) Nuclear magnetic resonance structural studies of membrane proteins in micelles and bilayers. Methods Mol Biol 400:515–529. doi:10.1007/978-1-59745-519-0_35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  283. Hwang PM, Choy WY, Lo EI, Chen L, Forman-Kay JD, Raetz CR, Prive GG, Bishop RE, Kay LE (2002) Solution structure and dynamics of the outer membrane enzyme PagP by NMR. Proc Natl Acad Sci U S A 99(21):13560–13565. doi:10.1073/pnas.212344499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Fernandez C, Hilty C, Wider G, Guntert P, Wuthrich K (2004) NMR structure of the integral membrane protein OmpX. J Mol Biol 336(5):1211–1221. doi:10.1016/j.jmb.2003.09.014

    Article  CAS  PubMed  Google Scholar 

  285. Arora A, Abildgaard F, Bushweller JH, Tamm LK (2001) Structure of outer membrane protein A transmembrane domain by NMR spectroscopy. Nat Struct Biol 8(4):334–338. doi:10.1038/86214

    Article  CAS  PubMed  Google Scholar 

  286. Hiller S, Garces RG, Malia TJ, Orekhov VY, Colombini M, Wagner G (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321(5893):1206–1210. doi:10.1126/science.1161302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. Raschle T, Rios Flores P, Opitz C, Muller DJ, Hiller S (2016) Monitoring backbone hydrogen bond formation in beta-barrel membrane protein folding. Angew Chem Int Ed. doi:10.1002/anie.201509910

    Google Scholar 

  288. Dufrene YF (2006) Atomic force microscopy of membrane proteins separating two aqueous compartments. Nat Methods 3(12):973–975. doi:10.1038/nmeth1206-973

    Article  CAS  PubMed  Google Scholar 

  289. Scheuring S, Goncalves RP, Prima V, Sturgis JN (2006) The photosynthetic apparatus of Rhodopseudomonas palustris: structures and organization. J Mol Biol 358(1):83–96. doi:10.1016/j.jmb.2006.01.085

    Article  CAS  PubMed  Google Scholar 

  290. Drews G, Peters J, Dierstein R (1983) Molecular-organization and biosynthesis of pigment-protein complexes of Rhodopseudomonas capsulata. Ann Microbiol 134B(1):151–158

    CAS  Google Scholar 

  291. Sturgis JN, Tucker JD, Olsen JD, Hunter CN, Niederman RA (2009) Atomic force microscopy studies of native photosynthetic membranes. Biochemistry 48(17):3679–3698. doi:10.1021/bi900045x

    Article  CAS  PubMed  Google Scholar 

  292. Goncalves RP, Agnus G, Sens P, Houssin C, Bartenlian B, Scheuring S (2006) Two-chamber AFM: probing membrane proteins separating two aqueous compartments. Nat Methods 3(12):1007–1012. doi:10.1038/nmeth965

    Article  CAS  PubMed  Google Scholar 

  293. Muller DJ, Engel A (2002) Conformations, flexibility, and interactions observed on individual membrane proteins by atomic force microscopy. Methods Cell Biol 68:257–299

    Article  PubMed  Google Scholar 

  294. Ge L, Villinger S, Mari SA, Giller K, Griesinger C, Becker S, Muller DJ, Zweckstetter M (2016) Molecular plasticity of the human voltage-dependent anion channel embedded into a membrane. Structure 24(4):585–594. doi:10.1016/j.str.2016.02.012

    Article  CAS  PubMed  Google Scholar 

  295. Hane F, Drolle E, Gaikwad R, Faught E, Leonenko Z (2011) Amyloid-beta aggregation on model lipid membranes: an atomic force microscopy study. J Alzheimers Dis 26(3):485–494. doi:10.3233/JAD-2011-102112

    CAS  PubMed  Google Scholar 

  296. Adamcik J, Jung JM, Flakowski J, De Los Rios P, Dietler G, Mezzenga R (2010) Understanding amyloid aggregation by statistical analysis of atomic force microscopy images. Nat Nanotechnol 5(6):423–428. doi:10.1038/nnano.2010.59

    Article  CAS  PubMed  Google Scholar 

  297. Stolz M, Stoffler D, Aebi U, Goldsbury C (2000) Monitoring biomolecular interactions by time-lapse atomic force microscopy. J Struct Biol 131(3):171–180. doi:10.1006/jsbi.2000.4301

    Article  CAS  PubMed  Google Scholar 

  298. Modler AJ, Gast K, Lutsch G, Damaschun G (2003) Assembly of amyloid protofibrils via critical oligomers—a novel pathway of amyloid formation. J Mol Biol 325(1):135–148

    Article  CAS  PubMed  Google Scholar 

  299. Garcia-Saez AJ, Schwille P (2007) Single molecule techniques for the study of membrane proteins. Appl Microbiol Biotechnol 76(2):257–266. doi:10.1007/s00253-007-1007-8

    Article  CAS  PubMed  Google Scholar 

  300. Zhang S, Andreasen M, Nielsen JT, Liu L, Nielsen EH, Song J, Ji G, Sun F, Skrydstrup T, Besenbacher F, Nielsen NC, Otzen DE, Dong M (2013) Coexistence of ribbon and helical fibrils originating from hIAPP(20-29) revealed by quantitative nanomechanical atomic force microscopy. Proc Natl Acad Sci U S A 110(8):2798–2803. doi:10.1073/pnas.1209955110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Zhou XE, Gao X, Barty A, Kang Y, He Y, Liu W, Ishchenko A, White TA, Yefanov O, Han GW, Xu Q, de Waal PW, Suino-Powell KM, Boutet S, Williams GJ, Wang M, Li D, Caffrey M, Chapman HN, Spence JC, Fromme P, Weierstall U, Stevens RC, Cherezov V, Melcher K, Xu HE (2016) X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex. Sci Data 3:160021. doi:10.1038/sdata.2016.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Panneels V, Wu W, Tsai CJ, Nogly P, Rheinberger J, Jaeger K, Cicchetti G, Gati C, Kick LM, Sala L, Capitani G, Milne C, Padeste C, Pedrini B, Li XD, Standfuss J, Abela R, Schertler G (2015) Time-resolved structural studies with serial crystallography: a new light on retinal proteins. Struct Dyn 2(4):041718. doi:10.1063/1.4922774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  303. Kumar RP, Ranaghan MJ, Ganjei AY, Oprian DD (2015) Crystal structure of recoverin with calcium ions bound to both functional EF hands. Biochemistry 54(49):7222–7228. doi:10.1021/acs.biochem.5b01160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  304. Strynadka NC, James MN (1989) Crystal structures of the helix-loop-helix calcium-binding proteins. Annu Rev Biochem 58:951–998. doi:10.1146/annurev.bi.58.070189.004511

    Article  CAS  PubMed  Google Scholar 

  305. Szczepek M, Beyriere F, Hofmann KP, Elgeti M, Kazmin R, Rose A, Bartl FJ, von Stetten D, Heck M, Sommer ME, Hildebrand PW, Scheerer P (2014) Crystal structure of a common GPCR-binding interface for G protein and arrestin. Nat Commun 5:4801. doi:10.1038/ncomms5801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Sommer ME, Elgeti M, Hildebrand PW, Szczepek M, Hofmann KP, Scheerer P (2015) Structure-based biophysical analysis of the interaction of rhodopsin with G protein and arrestin. Methods Enzymol 556:563–608. doi:10.1016/bs.mie.2014.12.014

    Article  CAS  PubMed  Google Scholar 

  307. Schredelseker J, Paz A, Lopez CJ, Altenbach C, Leung CS, Drexler MK, Chen JN, Hubbell WL, Abramson J (2014) High resolution structure and double electron-electron resonance of the zebrafish voltage-dependent anion channel 2 reveal an oligomeric population. J Biol Chem 289(18):12566–12577. doi:10.1074/jbc.M113.497438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Ujwal R, Cascio D, Colletier JP, Faham S, Zhang J, Toro L, Ping P, Abramson J (2008) The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci U S A 105(46):17742–17747. doi:10.1073/pnas.0809634105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Cuesta-Seijo JA, Neale C, Khan MA, Moktar J, Tran CD, Bishop RE, Pomes R, Prive GG (2010) PagP crystallized from SDS/cosolvent reveals the route for phospholipid access to the hydrocarbon ruler. Structure 18(9):1210–1219. doi:10.1016/j.str.2010.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Khan MA, Bishop RE (2009) Molecular mechanism for lateral lipid diffusion between the outer membrane external leaflet and a beta-barrel hydrocarbon ruler. Biochemistry 48(41):9745–9756. doi:10.1021/bi9013566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  311. Dalebroux ZD, Matamouros S, Whittington D, Bishop RE, Miller SI (2014) PhoPQ regulates acidic glycerophospholipid content of the Salmonella Typhimurium outer membrane. Proc Natl Acad Sci U S A 111(5):1963–1968. doi:10.1073/pnas.1316901111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  312. Song L, Hobaugh MR, Shustak C, Cheley S, Bayley H, Gouaux JE (1996) Structure of staphylococcal alpha-hemolysin, a heptameric transmembrane pore. Science 274(5294):1859–1866

    Article  CAS  PubMed  Google Scholar 

  313. Iacovache I, Bischofberger M, van der Goot FG (2010) Structure and assembly of pore-forming proteins. Curr Opin Struct Biol 20(2):241–246. doi:10.1016/j.sbi.2010.01.013

    Article  CAS  PubMed  Google Scholar 

  314. Tilley SJ, Orlova EV, Gilbert RJ, Andrew PW, Saibil HR (2005) Structural basis of pore formation by the bacterial toxin pneumolysin. Cell 121(2):247–256. doi:10.1016/j.cell.2005.02.033

    Article  CAS  PubMed  Google Scholar 

  315. Unno H, Goda S, Hatakeyama T (2014) Hemolytic lectin CEL-III heptamerizes via a large structural transition from alpha-helices to a beta-barrel during the transmembrane pore formation process. J Biol Chem 289(18):12805–12812. doi:10.1074/jbc.M113.541896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  316. Noinaj N, Kuszak AJ, Balusek C, Gumbart JC, Buchanan SK (2014) Lateral opening and exit pore formation are required for BamA function. Structure 22(7):1055–1062. doi:10.1016/j.str.2014.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  317. Jansen KB, Baker SL, Sousa MC (2015) Crystal structure of BamB bound to a periplasmic domain fragment of BamA, the central component of the beta-barrel assembly machine. J Biol Chem 290(4):2126–2136. doi:10.1074/jbc.M114.584524

    Article  CAS  PubMed  Google Scholar 

  318. Leyton DL, Belousoff MJ, Lithgow T (2015) The beta-barrel assembly machinery complex. Methods Mol Biol 1329:1–16. doi:10.1007/978-1-4939-2871-2_1

    Article  CAS  PubMed  Google Scholar 

  319. Gu Y, Li H, Dong H, Zeng Y, Zhang Z, Paterson NG, Stansfeld PJ, Wang Z, Zhang Y, Wang W, Dong C (2016) Structural basis of outer membrane protein insertion by the BAM complex. Nature 531(7592):64–69. doi:10.1038/nature17199

    Article  CAS  PubMed  Google Scholar 

  320. Han L, Zheng J, Wang Y, Yang X, Liu Y, Sun C, Cao B, Zhou H, Ni D, Lou J, Zhao Y, Huang Y (2016) Structure of the BAM complex and its implications for biogenesis of outer-membrane proteins. Nat Struct Mol Biol 23(3):192–196. doi:10.1038/nsmb.3181

    Article  CAS  PubMed  Google Scholar 

  321. Bergal HT, Hopkins AH, Metzner SI, Sousa MC (2016) The structure of a BamA-BamD fusion illuminates the architecture of the beta-barrel assembly machine core. Structure 24(2):243–251. doi:10.1016/j.str.2015.10.030

    Article  CAS  PubMed  Google Scholar 

  322. Fleming KG (2015) A combined kinetic push and thermodynamic pull as driving forces for outer membrane protein sorting and folding in bacteria. Philos Trans R Soc Lond B Biol Sci 370(1679). doi:10.1098/rstb.2015.0026

    Google Scholar 

  323. Plummer AM, Fleming KG (2015) BamA alone accelerates outer membrane protein folding in vitro through a catalytic mechanism. Biochemistry 54(39):6009–6011. doi:10.1021/acs.biochem.5b00950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Danoff EJ, Fleming KG (2015) Membrane defects accelerate outer membrane beta-barrel protein folding. Biochemistry 54(2):97–99. doi:10.1021/bi501443p

    Article  CAS  PubMed  Google Scholar 

  325. Chan NC, Lithgow T (2008) The peripheral membrane subunits of the SAM complex function codependently in mitochondrial outer membrane biogenesis. Mol Biol Cell 19(1):126–136. doi:10.1091/mbc.E07-08-0796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

B.R.I. thanks the University Grants Commission, Govt. of India, for Senior Research Fellowship. A.G. thanks IISER Bhopal for Senior Research Fellowship. R.M. is a Wellcome Trust/DBT India Alliance Intermediate Fellow. This work is supported by the Wellcome Trust/DBT India Alliance award number IA/I/14/1/501305, Department of Biotechnology, Govt. of India award numbers BT/01/IYBA/2009 and BT/HRD/35/02/2006, and the Science and Engineering Research Board of the Department of Science and Technology, Govt. of India award number SR/FT/LS-47/2010 to R.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radhakrishnan Mahalakshmi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Iyer, B.R., Gupta, A., Mahalakshmi, R. (2016). Approaches for Preparation and Biophysical Characterization of Transmembrane β-Barrels. In: Shukla, A. (eds) Chemical and Synthetic Approaches in Membrane Biology. Springer Protocols Handbooks. Humana Press, New York, NY. https://doi.org/10.1007/8623_2016_4

Download citation

  • DOI: https://doi.org/10.1007/8623_2016_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6835-0

  • Online ISBN: 978-1-4939-6836-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics