Protocols for Radiotracer Estimation of Methane Oxidation Rates at In Situ Methane Concentrations in Marine Sediments

  • Ryan Sibert
  • Vladimir A. Samarkin
  • Samantha B. Joye
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

The microbial consumption of methane acts as a biofilter in deep marine environments, significantly limiting the flux of methane from ocean to atmosphere. Measurements of both anaerobic and aerobic oxidation of methane are necessary to constrain net carbon flux from deeply buried sediments to the overlying water column. Precise methods for quantifying methane oxidation (MOx) rates are crucial to these efforts. Most protocols describe conducting incubations at 1 atm pressure, limiting methane concentrations to seawater saturation values (~1.2 mM CH4). Deep sediment porewaters are often supersaturated with methane relative to atmospheric pressure, which introduces potentially significant error into MOx rate measurements. Here, we present a detailed method for determining rates of anaerobic oxidation of methane (AOM) at in situ pressure and methane concentration for sediments and deep waters. By conducting MOx rate assays at in situ pressure and realistic environmental methane concentrations, methane dynamics can be constrained with greater accuracy.

Keywords:

Deep-sea methane oxidation Marine sediment Pressure vessel incubation Radiotracer Rate measurements 

References

  1. 1.
    Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) (2013) IPCC, 2013. Climate change 2013: the physical science basis. Contribution of Working Group I to the fifth assessment report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge and New York, 1535 pp. doi:10.1017/CBO9781107415324Google Scholar
  2. 2.
    Thomas DJ, Zachos JC, Bralower TJ, Thomas E, Bohaty S (2002) Warming the fuel for the fire: evidence for the thermal dissociation of methane hydrate during the Paleocene-Eocene thermal maximum. Geology 30:1067–1070CrossRefGoogle Scholar
  3. 3.
    Hesselbo SP, Gröcke DR, Jenkyns HC, Bjerrum CJ, Farrimond PL, Morgans-Bell HS, Green O (2000) Massive dissociation of gas hydrates during a Jurassic Oceanic Anoxic Event. Nature 406:392–395CrossRefPubMedGoogle Scholar
  4. 4.
    Katz ME, Pak DK, Dickens GR, Miller KG (1999) The source and fate of massive carbon input during the latest Paleocene thermal maximum. Science 286:1531–1533CrossRefPubMedGoogle Scholar
  5. 5.
    Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334. doi:10.1146/annurev.micro.61.080706.093130 CrossRefPubMedGoogle Scholar
  6. 6.
    Reeburgh WS (2007) Oceanic methane biochemistry. Chem Rev 107:486–513CrossRefPubMedGoogle Scholar
  7. 7.
    Wankel SD, Joye SB, Samarkin VA, Shah SR, Friedrich G, Melas-Kyriazi J, Girguis PR (2010) New constraints on methane fluxes and rates of anaerobic methane oxidation in a Gulf of Mexico brine pool via in situ mass spectrometry. Deep-Sea Res II 57(21–23):2022–2029. doi:10.1016/j.dsr2.2010.05.009 CrossRefGoogle Scholar
  8. 8.
    Orcutt B, Samarkin V, Boetius A, Joye S (2008) On the relationship between methane production and oxidation by anaerobic methanotrophic communities from cold seeps of the Gulf of Mexico. Environ Microbiol 10(5):1108–1117CrossRefPubMedGoogle Scholar
  9. 9.
    Orcutt B, Boetius A, Elvert M, Samarkin V, Joye SB (2005) Molecular biochemistry of sulfate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico cold seeps. Geochim Cosmochim Acta 69(17):4267–4281CrossRefGoogle Scholar
  10. 10.
    Joye SB, Boetius A, Orcutt BN, Montoya JP, Schulz HN, Erickson MJ, Lugo SK (2004) The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps. Chem Geol 205:219–238CrossRefGoogle Scholar
  11. 11.
    Kellerman MY, Wegener G, Elvert M, Yoshinaga MY, Lin Y, Holler T, Mollar XP, Knittel K, Hinrichs K (2012) Autotrophy as a predominant mode of carbon fixation in anaerobic methane-oxidizing microbial communities. Proc Natl Acad Sci U S A 109(47):19321–19326. doi:10.1073/pnas.1208795109 CrossRefGoogle Scholar
  12. 12.
    Jorgensen BB, Boetius A (2007) Feast and famine: microbial life in the deep-sea bed. Nat Rev Microbiol 5(10):770–781CrossRefPubMedGoogle Scholar
  13. 13.
    Bowles MW, Samarkin VA, Bowles K, Joye SB (2011) Weak coupling between sulfate reduction and the anaerobic oxidation of methane in methane-rich seafloor sediments during ex-situ incubation. Geochim Cosmochim Acta 75:500–519CrossRefGoogle Scholar
  14. 14.
    Valentine DL, Reeburgh WS (2004) New perspectives on anaerobic methane oxidation. Environ Microbiol 2(5):477–484CrossRefGoogle Scholar
  15. 15.
    Orphan VJ, House CH, Hinrichs K, McKeegan KD, DeLong EF (2001) Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484. doi:10.1126/science.1061338 CrossRefPubMedGoogle Scholar
  16. 16.
    Boetius A, Ravenschlag K, Schubert CJ, Rickert D, Widdel F, Gieseke A, Amann R, Jorgensen BB, Witte U, Pfannkuche O (2000) A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623–626. doi:10.1038/35036572 CrossRefPubMedGoogle Scholar
  17. 17.
    Hinrichs K, Hayes JM, Sylva JP, Brewer PG, DeLong EF (1999) Methane-consuming archaebacteria in marine sediments. Nature 398:802–805. doi:10.1038/19751 CrossRefPubMedGoogle Scholar
  18. 18.
    Hoehler TM, Alperin MJ, Albert DA, Martens CS (1994) Field and laboratory studies of methane oxidation in an anoxic marine sediment: evidence for a methanogen-sulfate reducer consortium. Global Biogeochem Cycles 8:451–463. doi:10.1029/94GB01800 CrossRefGoogle Scholar
  19. 19.
    Raghoebarsing AA, Pol A, van de Pas-Schoonen KT, Smolders AJ, Ettwig KF, Rijpstra WI, Schouten S, Damste JS, Op den Camp HJ, Jetten MS, Strous M (2006) A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440:918–921. doi:10.1038/nature04617 CrossRefPubMedGoogle Scholar
  20. 20.
    Ettwig KF, Shima S, van de Pas-Schoonen KT, Kahnt J, Medema MH, Op den Camp HJM, Jetten MSM, Strous M (2009) Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea. Environ Microbiol 10(11):3164–3173CrossRefGoogle Scholar
  21. 21.
    Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187. doi:10.1126/science.1169984 CrossRefPubMedGoogle Scholar
  22. 22.
    Wegener G, Krukenberg V, Riedel D, Tegetmeyer HE, Boetius A (2015) Intercellular wiring enables electron transfer between methanotrophic archaea and bacteria. Nature 526:587–590. doi:10.1038/nature15733 CrossRefPubMedGoogle Scholar
  23. 23.
    McGlynn SE, Chadwick GL, Kempes CP, Orphan VJ (2015) Single cell activity reveals direct electron transfer in methanotrophic consortia. Nature 526:531–535. doi:10.1038/nature15512 CrossRefPubMedGoogle Scholar
  24. 24.
    Milucka J, Ferdelman TG, Polerecky L, Franzke D, Wegener G, Schmid M, Lieberwirth I, Wagner M, Widdel F, Kuypers MMM (2012) Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature 491:541–546. doi:10.1038/nature11656 CrossRefPubMedGoogle Scholar
  25. 25.
    Iversen N, Blackburn HT (1981) Seasonal rates of methane oxidation in anoxic marine sediments. Appl Environ Microbiol 41(6):1295–1300. doi:10.1016/0198-0254(81)91600-9 PubMedPubMedCentralGoogle Scholar
  26. 26.
    Iversen N, Jorgensen BB (1985) Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark). Limnol Oceanogr 30(5):944–955. doi:10.4319/lo.1985.30.5.0944 CrossRefGoogle Scholar
  27. 27.
    Bowles et al (2016) Extreme rates of anaerobic oxidation of methane, decoupling from sulfate reduction, and novel metabolic modes at high in situ methane concentration (in review)Google Scholar
  28. 28.
    Childress JJ, Fisher CR, Brooks JM, Kennicutt MC II, Bidigare R, Anderson AE (1986) A methanotrophic marine molluscan (Bivalvia, mytilidae) symbiosis: mussels fueled by gas. Science 233:1306–1308CrossRefPubMedGoogle Scholar
  29. 29.
    Sheu DD (1990) The anoxic Orca Basin (Gulf of Mexico): geochemistry of brines and sediments. Rev Aquat Sci 2(3, 4):491–507Google Scholar
  30. 30.
    Audi G, Wapstra AH, Thibault C (2003) The AME2003 atomic mass evaluation (II). Tables, graphs and references. Nucl Phys A 729:337–676CrossRefGoogle Scholar
  31. 31.
    Lapham L, Wilson R, Riedel M, Paull CK, Holmes ME (2013) Temporal variability of in situ methane concentrations in gas hydrate-bearing sediments near Bullseye Vent, Northern Cascadia Margin. Geochem Geophys Geosyst 14:7. doi:10.1002/ggge.20167 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ryan Sibert
    • 1
  • Vladimir A. Samarkin
    • 1
  • Samantha B. Joye
    • 1
  1. 1.Department of Marine SciencesUniversity of GeorgiaAthensUSA

Personalised recommendations