Microbial Control of the Concentrations of Dissolved Aquatic Hydrocarbons

  • D. K. ButtonEmail author
Part of the Springer Protocols Handbooks book series (SPH)


Hydrocarbon oxidizing bacteria have a major effect on the chemistry of natural water systems, particularly with increased inputs of anthropogenic petroleum products. We review the basic kinetics helpful in understanding the equilibrium between nutrient concentrations and microbial populations, and describe some techniques useful in establishing that equilibrium with emphasis on hydrocarbons. Topics include oil spills, naturally occurring hydrocarbons such as terpenes, and some peculiarities of the metabolism of these hydrophilic solutes, isolation of ambient hydrocarbon-using bacteria, liberation of partly oxidized products of their metabolism, some environmental effects, and presumed peculiarities of the associated membrane transport mechanisms. Analysis techniques include radionuclide methods, autoradiography, microbial isolations and identification, quantitative high-resolution flow cytometry, and methods for tracking down the sources of aquatic hydrocarbons. The need for improved instrumentation and theoretical approaches is demonstrated.


Flow cytometry Hydrocarbons Kinetics Microbial populations 


  1. 1.
    Shaw DG, Part I (1989) Hydrocarbon C5 to C7. Pergamon Press, OxfordGoogle Scholar
  2. 2.
    Button DK, Robertson BR (1986) Dissolved hydrocarbon metabolism. Limnol Oceanogr 31:101–111CrossRefGoogle Scholar
  3. 3.
    Button DK, Robertson BR, McIntosh D, Jüttner F (1992) Interactions between marine bacteria and dissolved phase and beached hydrocarbons after the Exxon Valdez oil spill. Appl Environ Microbiol 58:243–251PubMedPubMedCentralGoogle Scholar
  4. 4.
    Kemp PF, Lee S, LaRaoche J (1993) Estimating the growth rate of slowly growing marine bacteria from RNA content. Appl Environ Microbiol 59:2594–2601PubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhao Y, Temperton B et al (2013) Abundant SAR11 viruses in the ocean. Nature 494:357–360CrossRefPubMedGoogle Scholar
  6. 6.
    Monod J (1950) La technique de culture continue. Théory et applications. Ann Inst Pasteur Paris 79:390–410Google Scholar
  7. 7.
    Button DK (1998) Nutrient uptake by microorganisms according to kinetic parameters from theory as related to cytoarchitecture. Microbiol Mol Biol Rev 62:636–645PubMedPubMedCentralGoogle Scholar
  8. 8.
    Cook PF, Cleland WW (2007) Enzyme kinetics and mechanisms. Garland Science, New YorkGoogle Scholar
  9. 9.
    Law AT, Button DK (1977) Multiple-carbon-source-limited growth kinetics of a marine coryneform bacterium. J Bacteriol 129:115–123PubMedPubMedCentralGoogle Scholar
  10. 10.
    Robertson BR, Schell DW, Button DK (1979) Dissolved hydrocarbon rates. University of Alaska, Fairbanks, Port Valdez, Alaska, pp 109–123Google Scholar
  11. 11.
    Zystra GJ, Gibson DT (1989) Toluene degradation by Pseudomonas putida F1. Nucleotide sequence of the todC1C2BADE genes and their expression in Escherichia coli. J Biol Chem 264:14940–14946Google Scholar
  12. 12.
    Arhelger SD, Robertson BR, Button DK (1976) Arctic hydrocarbon biodegradation. In: Wolfe DA (ed) Fate and effects on petroleum hydrocarbons in marine ecosystems and organisms. Pergamon, Oxford, pp 270–275Google Scholar
  13. 13.
    Robertson BR, Button DK (1979) Phosphate-limited continuous culture of Rhodotorula rubra: kinetics of transport, leakage, and growth. J Bacteriol 138:884–895PubMedPubMedCentralGoogle Scholar
  14. 14.
    Brown EJ, Button DK (1979) Phosphate limited growth kinetics of Selenastrum Capricornutum (Chlorophyceae). J Phycol 15:305–311CrossRefGoogle Scholar
  15. 15.
    Dunfield PF, Conrad R (2000) Starvation alters the apparent half-saturation constant for methane in the type II methanotroph methylocystis strain LR1. Appl Environ Microbiol 66:4136–4138CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Button DK (1985) Kinetics of nutrient-limited transport and microbial growth. Microbiol Rev 49:270–297PubMedPubMedCentralGoogle Scholar
  17. 17.
    Kou SC, Cherayil BJ, Min W, English BP, Xie XSB (2005) Single-molecule Michaelis-Menten equations. J Phys Chem 109:19068–19081CrossRefGoogle Scholar
  18. 18.
    Eigen M (2013) From strange simplicity to complex familiarity. Oxford University Press, OxfordCrossRefGoogle Scholar
  19. 19.
    Shrope MA (2011) Deep wounds. Nature 472:154Google Scholar
  20. 20.
    Peterson CH, Rice SD (2003) Long-term ecosystem response to the Exxon Valdez oil spill. Science 302:2082–2086CrossRefPubMedGoogle Scholar
  21. 21.
    Button DK, Robertson BR (1987) Toluene induction and uptake kinetics and their inclusion into the specific affinity equation for describing rates of hydrocarbon metabolism. Appl Environ Microbiol 53:2193–2205PubMedPubMedCentralGoogle Scholar
  22. 22.
    Button DK, Robertson BR, Craig KS (1981) Dissolved hydrocarbons and related microflora in a fjordal seaport: sources, sinks, concentrations, and kinetics. Appl Environ Microbiol 42:708–719PubMedPubMedCentralGoogle Scholar
  23. 23.
    Button DK, Jüttner F (1989) Terpenes in Alaskan waters: concentrations, sources, and the microbial kinetics used in their prediction. Mar Chem 26:57–66CrossRefGoogle Scholar
  24. 24.
    Button DK (1969) Effect of clay on the availability of dilute organic nutrients to steady state heterotrophic populations. Limnol Oceanogr 14:95–100CrossRefGoogle Scholar
  25. 25.
    Button DK (1976) The influence of clay and bacteria on the concentration of dissolved hydrocarbon in saline solution. Geochim Cosmochim Acta 40:435–440CrossRefGoogle Scholar
  26. 26.
    Kleindiensta S, Seidela M, Ziervogelb K (2015) Chemical dispersants can suppress the activity of natural oil-degrading microorganisms. Proc Natl Acad Sci U S A 112:14900–14905CrossRefGoogle Scholar
  27. 27.
    Wang Y, Lau PC, Button DK (1996) A marine oligobacterium harboring genes known to be part of aromatic hydrocarbon degradation pathways of soil pseudomonads. Appl Environ Microbiol 62:2169–2173PubMedPubMedCentralGoogle Scholar
  28. 28.
    Button DK (1984) Evidence for a terpene-based food chain in the Gulf of Alaska. Appl Environ Microbiol 48:1004–1011PubMedPubMedCentralGoogle Scholar
  29. 29.
    Button DK (1971) Biological effects in the marine environment. In: Hood DW (ed) Impingement of man on the oceans. University of Alaska Press, Fairbanks Alaska, pp 421–429Google Scholar
  30. 30.
    Johnson MJ (1967) Growth of microbial cells on hydrocarbons. Science 3769:1515–1519CrossRefGoogle Scholar
  31. 31.
    Robertson BR, Button DK, Koch AL (1998) Determination of the biomasses of small bacteria at low concentrations in a mixture of species with forward light scatter measurements by flow cytometry. Appl Environ Microbiol 64:3900–3909PubMedPubMedCentralGoogle Scholar
  32. 32.
    Giovannoni SJ, Tripp HJ, Givan S (2005) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309:1242–1245CrossRefPubMedGoogle Scholar
  33. 33.
    Robertson BR, Button DK (1989) Characterizing aquatic bacteria according to population, cell size, and apparent DNA content by flow cytometry. Cytometry 10:70–76CrossRefPubMedGoogle Scholar
  34. 34.
    Heider J, Spormann AM, Beller HR (1999) Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev 22:459–473CrossRefGoogle Scholar
  35. 35.
    Button DK, Robertson BR (1988) Hydrocarbon bioconversions: sources, dynamics, products and populations. In: Shaw DG, Hameedi MJ (eds) Environmental studies in Port Valdez, Alaska: a basis for management. Springer, New York, pp 267–291CrossRefGoogle Scholar
  36. 36.
    Shreve GS, Vogel TM (1992) Comparison of substrate utilization rates and growth kinetics between immobilized and suspended Pseudomonas cells. Biotechnol Bioeng 41:370–379CrossRefGoogle Scholar
  37. 37.
    Robertson BR, Arhelger S, Kinney PJ, Button DK (1981) Hydrocarbon biodegradation in Alaskan waters. In: Wolf D (ed) Microbial degradation of oil pollutants. Center for Wetland Resources, Louisiana State University, pp 171–184Google Scholar
  38. 38.
    Button DK, Robertson BR (2001) Determination of DNA content of aquatic bacteria by flow cytometry. Appl Environ Microbiol 67:1636–1645CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Button DK, Robertson BR, Lepp PW, Schmidt TM (1998) A small, dilute-cytoplasm, high-affinity, novel bacterium isolated by extinction culture and having kinetic constants compatible with growth at ambient concentrations of dissolved nutrients in seawater. Appl Environ Microbiol 64:4467–4476PubMedPubMedCentralGoogle Scholar
  40. 40.
    Kinney PJ, Button DK, Schell DM (1969) Kinetics of dissipation and biodegradation of crude oil in Alaska’s Cook Inlet. In: Proceedings of the 1969 Joint Conferences on Prevention and Control of Oil Spills. American Petroleum Institute, Washington, pp 333–340Google Scholar
  41. 41.
    Button DK (1971) Biological effects in the marine environment. In: Hood DW (ed) Impingement of man on the oceans. University of Alaska Press, Fairbanks, Alaska, pp 421–429Google Scholar
  42. 42.
    Button DK, Robertson BR (1989) Kinetics of bacterial processes in natural aquatic systems based on biomass as determined by high-resolution flow cytometry. Cytometry 10:558–563CrossRefPubMedGoogle Scholar
  43. 43.
    Chen GI, Russell JB (1990) Transport and deamination of amino acids by a gram-positive, monensin-sensitive ruminal bacterium. Appl Environ Microbiol 56:186–192Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Big Sand Lake Preservation Association and University of AlaskaFairbanksUSA
  2. 2.Big Sand Lake Preservation Association and University of AlaskaFairbanksUSA

Personalised recommendations