Advertisement

Comprehensive Two-Dimensional Gas Chromatography to Assess Petroleum Product Weathering

  • Robert F. SwarthoutEmail author
  • Jonas Gros
  • J. Samuel Arey
  • Robert K. Nelson
  • David L. Valentine
  • Christopher M. Reddy
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Petroleum products are highly diverse, complex organic mixtures often comprising thousands of hydrocarbon compounds. When released into the environment, these complex mixtures are simultaneously subjected to physical, chemical, and biological weathering processes. Quantifying the impact of these processes requires methods to resolve changes in the concentrations of the constituent components. Comprehensive two-dimensional gas chromatography (GC × GC) is an effective tool for the separation and analysis of complex organic mixtures and is well suited to this task. The separation of compounds in two dimensions based on their affinity for different stationary phases results in greater chromatographic peak capacity and allows for the estimation of physical–chemical properties relevant to environmental partitioning. Recent advances in instrumentation and data analysis tools have enabled the expanded use of GC × GC in analysis of petroleum products. However, the application of GC × GC to the analysis of petroleum product weathering has been limited by a lack of widely available, robust data analysis tools. Here we present a highly reliable instrument method for the analysis of crude oil, refined petroleum products, and weathered petroleum residues. We then describe a recommended method for fingerprinting of weathered petroleum residues and comparison to source materials. Finally, we describe a set of recently developed, freely available computer algorithms for the qualitative and quantitative analysis of petroleum product weathering processes. The described methods support quantitative estimates of the contributions of evaporation and dissolution to the weathering of oil samples.

Keywords:

Baseline correction Chromatogram alignment Crude oil fingerprinting Mass loss tables Oil spill dissolution Oil spill evaporation Partitioning property estimation Water-washing 

References

  1. 1.
    Koolen HHF, Swarthout RF, Nelson RK, Chen H, Krajewski LC, Aeppli C, McKenna AM, Rodgers RP, Reddy CM (2015) Unprecedented insights into the chemical complexity of coal tar from comprehensive two-dimensional gas chromatography mass spectrometry and direct infusion fourier transform Ion cyclotron resonance mass spectrometry. Energy Fuel 29(2):641–648Google Scholar
  2. 2.
    Yin F, Hayworth JS, Clement TP (2015) A tale of two recent spills--comparison of 2014 Galveston Bay and 2010 Deepwater Horizon oil spill residues. PLoS One 10(2)Google Scholar
  3. 3.
    Frysinger GS, Gaines RB, Xu L, Reddy CM (2003) Resolving the unresolved complex mixture in petroleum-contaminated sediments. Environ Sci Technol 37(8):1653–1662CrossRefPubMedGoogle Scholar
  4. 4.
    Atlas RM (1995) Petroleum biodegradation and oil spill bioremediation. Mar Pollut Bull 31(4–12):178–182CrossRefGoogle Scholar
  5. 5.
    Fingas MF (1995) A literature review of the physics and predictive modelling of oil spill evaporation. J Hazard Mater 42(2):157–175CrossRefGoogle Scholar
  6. 6.
    National Research Council (2003) Oil in the Sea III: inputs, fates, and effects. Washington, p 280Google Scholar
  7. 7.
    Stout SA, Wang Z (2016) Chemical fingerprinting methods and factors affecting petroleum fingerprinting in the environment. In: Stout SA, Wang Z (eds) Standard handbook oil spill environmental forensics: fingerprinting and source identification. Academic Press, New York, p 1107Google Scholar
  8. 8.
    Aeppli C, Nelson RK, Radovic JR, Carmichael CA, Valentine DL, Reddy CM (2014) Recalcitrance and degradation of petroleum biomarkers upon abiotic and biotic natural weathering of Deepwater Horizon Oil. Environ Sci Technol 48(12):6726–6734CrossRefPubMedGoogle Scholar
  9. 9.
    Albaiges J, Bayona JM, Radovic JR (2016) Photochemical effects on oil spill fingerprinting. In: Stout SA, Wang Z (eds) Oil spill environmental forensics. Elsevier, New York, p 1107Google Scholar
  10. 10.
    Radovic JR, Aeppli C, Nelson RK, Jimenez N, Reddy CM, Bayona JM, Albaiges J (2014) Assessment of photochemical processes in marine oil spill fingerprinting. Mar Pollut Bull 79(1–2):268–277CrossRefPubMedGoogle Scholar
  11. 11.
    Arey JS, Gschwend PM (2005) A physical–chemical screening model for anticipating widespread contamination of community water supply wells by gasoline constituents. J Contam Hydrol 76(1–2):109–138CrossRefPubMedGoogle Scholar
  12. 12.
    Gros J, Nabi D, Wuerz B, Wick LY, Brussaard CPD, Huisman J, van der Meer JR, Reddy CM, Arey JS (2014) First day of an oil spill on the open sea: early mass transfers of hydrocarbons to air and water. Environ Sci Technol 48(16):9400–9411CrossRefPubMedGoogle Scholar
  13. 13.
    Harrison W, Winnik MA, Kwong PTY, Mackay D (1975) Crude oil spills. Disappearance of aromatic and aliphatic components from small sea-surface slicks. Environ Sci Technol 9(3):231–234CrossRefGoogle Scholar
  14. 14.
    Reddy CM, Quinn JG (2001) The North Cape oil spill: hydrocarbons in Rhode Island coastal waters and Point Judith Pond. Mar Environ Res 52(5):445–461CrossRefPubMedGoogle Scholar
  15. 15.
    Bailey NJL, Jobson AM, Rogers MA (1973) Bacterial degradation of crude oil: comparison of field and experimental data. Chem Geol 11(3):203–221CrossRefGoogle Scholar
  16. 16.
    Peters KE, Walters CC, Moldawan JM (2004) The biomarker guide. Cambridge University Press, New YorkCrossRefGoogle Scholar
  17. 17.
    Prince R, Walters CC (2016) Biodegradation of oil hydrocarbons and its implications for source identification. In: Stout SA, Wang Z (eds) Oil spill environmental forensics. Elsevier, New York, p 1107Google Scholar
  18. 18.
    Tran TC, Logan GA, Grosjean E, Ryan D, Marriott PJ (2010) Use of comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry for the characterization of biodegradation and unresolved complex mixtures in petroleum. Geochim Cosmochim Acta 74(22):6468–6484CrossRefGoogle Scholar
  19. 19.
    Gros J, Reddy CM, Aeppli C, Nelson RK, Carmichael CA, Arey JS (2014) Resolving biodegradation patterns of persistent saturated hydrocarbons in weathered oil samples from the Deepwater Horizon disaster. Environ Sci Technol 48(3):1628–1637CrossRefPubMedGoogle Scholar
  20. 20.
    Wenger LM, Davis CL, Isaksen GH (2002) Multiple controls on petroleum biodegradation and impact on oil quality. SPE Reserv Eval Eng 5:375–383CrossRefGoogle Scholar
  21. 21.
    Aeppli C, Carmichael CA, Nelson RK, Lemkau KL, Graham WM, Redmond MC, Valentine DL, Reddy CM (2012) Oil weathering after the Deepwater Horizon disaster led to the formation of oxygenated residues. Environ Sci Technol 46(16):8799–8807CrossRefPubMedGoogle Scholar
  22. 22.
    Arey JS, Nelson RK, Plata DL, Reddy CM (2007) Disentangling oil weathering using GC × GC. 2. Mass transfer calculations. Environ Sci Technol 41(16):5747–5755CrossRefPubMedGoogle Scholar
  23. 23.
    Arey JS, Nelson RK, Reddy CM (2007) Disentangling oil weathering using GC × GC. 1. Chromatogram analysis. Environ Sci Technol 41(16):5738–5746CrossRefPubMedGoogle Scholar
  24. 24.
    Lemkau KL, Peacock EE, Nelson RK, Ventura GT, Kovecses JL, Reddy CM (2010) The M/V Cosco Busan spill: source identification and short-term fate. Mar Pollut Bull 60(11):2123–2129CrossRefPubMedGoogle Scholar
  25. 25.
    Nelson RK, Kile BM, Plata DL, Sylva SP, Xu L, Reddy CM, Gaines RB, Frysinger GS, Reichenbach SE (2006) Tracking the weathering of an oil spill with comprehensive two-dimensional gas chromatography. Environ Forensics 7(1):33–44CrossRefGoogle Scholar
  26. 26.
    Reddy CM, Eglinton TI, Hounshell A, White HK, Xu L, Gaines RB, Frysinger GS (2002) The West Falmouth oil spill after thirty years: the persistence of petroleum hydrocarbons in marsh sediments. Environ Sci Technol 36(22):4754–4760CrossRefPubMedGoogle Scholar
  27. 27.
    Frysinger GS, Gaines RB (1999) Comprehensive two-dimensional gas chromatography with mass spectrometric detection (GC × GC/MS) applied to the analysis of petroleum. J High Resolut Chromatogr 22(5):251–255CrossRefGoogle Scholar
  28. 28.
    Arey JS, Nelson RK, Xu L, Reddy CM (2005) Using comprehensive two-dimensional gas chromatography retention indices to estimate environmental partitioning properties for a complete set of diesel fuel hydrocarbons. Anal Chem 77(22):7172–7182CrossRefPubMedGoogle Scholar
  29. 29.
    Dallüge J, Beens J, Brinkman UAT (2003) Comprehensive two-dimensional gas chromatography: a powerful and versatile analytical tool. J Chromatogr A 1000(1–2):69–108CrossRefPubMedGoogle Scholar
  30. 30.
    Jiang M, Kulsing C, Nolvachai Y, Marriott PJ (2015) Two-dimensional retention indices improve component identification in comprehensive two-dimensional gas chromatography of saffron. Anal Chem 87(11):5753–5761CrossRefPubMedGoogle Scholar
  31. 31.
    Tong HY, Karasek FW (1984) Flame ionization detector response factors for compound classes in quantitative analysis of complex organic mixtures. Anal Chem 56(12):2124–2128CrossRefGoogle Scholar
  32. 32.
    Hoh E, Lehotay SJ, Mastovska K, Ngo HL, Vetter W, Pangallo KC, Reddy CM (2009) Capabilities of direct sample introduction – comprehensive two-dimensional gas chromatography – time-of-flight mass spectrometry to analyze organic chemicals of interest in fish oils. Environ Sci Technol 43(9):3240–3247CrossRefPubMedGoogle Scholar
  33. 33.
    Nabi D, Gros J, Dimitriou-Christidis P, Arey JS (2014) Mapping environmental partitioning properties of nonpolar complex mixtures by use of GC × GC. Environ Sci Technol 48(12):6814–6826CrossRefPubMedGoogle Scholar
  34. 34.
    Nelson RK, Aeppli C, Arey JS, Chen H, de Oliveira AHB, Eiserbeck C, Frysinger GS, Gaines RB, Grice K, Gros J, Hall GJ, Koolen HHF, Lemkau KL, McKenna AM, Reddy CM, Rodgers RP, Swarthout RF, Valentine DL, White HW (2016) Applications of comprehensive two-dimensional gas chromatography (GC × GC) in studying the source, transport, and fate of petroleum hydrocarbons in the environment. In: Wang Z, Stout SA (eds) Standard handbook oil spill environmental forensics: Fingerprinting and Source Identification. Edition 2, Chapter 8, Elsevier: pp. 399–448Google Scholar
  35. 35.
    Letinski DJ, Prince R (2016) Hydrocarbon extraction. In: McGenity TJ, Timmis K, Nogales B (eds) Chemical and physical analysis of hydrocarbons and petroleum, Hydrocarbon and Lipid Microbiology Protocols, vol 3, Chapter 1, Springer: pp. xx-xxGoogle Scholar
  36. 36.
    Eilers PHC (2004) Parametric time warping. Anal Chem 76(2):404–411CrossRefPubMedGoogle Scholar
  37. 37.
    Samanipour S, Dimitriou-Christidis P, Gros J, Grange A, Samuel Arey J (2015) Analyte quantification with comprehensive two-dimensional gas chromatography: assessment of methods for baseline correction, peak delineation, and matrix effect elimination for real samples. J Chromatogr A 1375:123–139CrossRefPubMedGoogle Scholar
  38. 38.
    Gros J, Nabi D, Dimitriou-Christidis P, Rutler R, Arey JS (2012) Robust algorithm for aligning two-dimensional chromatograms. Anal Chem 84(21):9033–9040CrossRefPubMedGoogle Scholar
  39. 39.
    Reichenbach SE, Ni M, Zhang D, Ledford EB Jr (2003) Image background removal in comprehensive two-dimensional gas chromatography. J Chromatogr A 985(1–2):47–56CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Robert F. Swarthout
    • 1
    Email author
  • Jonas Gros
    • 2
  • J. Samuel Arey
    • 2
    • 3
  • Robert K. Nelson
    • 4
  • David L. Valentine
    • 5
  • Christopher M. Reddy
    • 4
  1. 1.Department of ChemistryAppalachian State UniversityBooneUSA
  2. 2.Environmental Chemistry Modeling LaboratoryEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  3. 3.Eawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
  4. 4.Department of Marine Chemistry and GeochemistryWoods Hole Oceanographic InstitutionWoods HoleUSA
  5. 5.Department of Earth Science and Marine Science InstituteUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations