Protocols for Investigating the Microbial Communities of Oil and Gas Reservoirs

  • Nicolas Tsesmetzis
  • Michael J. Maguire
  • Ian M. HeadEmail author
  • Bart P. Lomans
Part of the Springer Protocols Handbooks book series (SPH)


Recent studies have shown that microorganisms and microbial activity in oil reservoirs and the associated production systems are much more prominent than was originally thought. These findings, in conjunction with technological advances in bio-related disciplines, have revolutionized the way we understand and manage these biological processes.

Here we present a series of protocols outlining the best practices for handling core and produced fluid material from petroleum reservoirs for isolation of nucleic acids, microbial profiling, and whole metagenome sequencing.


Contamination Hydrocarbon Inhibition Low biomass Oil Procedural blank Petroleum reservoir 


  1. 1.
    Ollivier B, Magot M (2005) Petroleum microbiology. ASM Press, Washington, p 365Google Scholar
  2. 2.
    Hubert C (2010) Microbial ecology of oil reservoir souring and its control by nitrate injection. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Heidelberg, pp 2753–2766CrossRefGoogle Scholar
  3. 3.
    Whitby C, Skovhus TL (2011) Applied microbiology and molecular biology in oilfield systems. Springer, Netherlands, p 279CrossRefGoogle Scholar
  4. 4.
    Skovhus TL, Caffrey SM, Hubert CRJ (2014) Applications of molecular microbiological methods. Caister Academic Press, United Kingdom, p 214Google Scholar
  5. 5.
    Kaster KM et al (2009) Characterisation of culture-independent and -dependent microbial communities in a high-temperature offshore chalk petroleum reservoir. Antonie Van Leeuwenhoek 96(4):423–439CrossRefPubMedGoogle Scholar
  6. 6.
    Orphan VJ et al (2000) Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66(2):700–711CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Zhang F et al (2010) Response of microbial community structure to microbial plugging in a mesothermic petroleum reservoir in China. Appl Microbiol Biotechnol 88(6):1413–1422CrossRefPubMedGoogle Scholar
  8. 8.
    Wang LY et al (2014) Comparison of bacterial community in aqueous and oil phases of water-flooded petroleum reservoirs using pyrosequencing and clone library approaches. Appl Microbiol Biotechnol 98(9):4209–4221CrossRefPubMedGoogle Scholar
  9. 9.
    Meckenstock RU et al (2014) Oil biodegradation. Water droplets in oil are microhabitats for microbial life. Science 345(6197):673–676CrossRefPubMedGoogle Scholar
  10. 10.
    Bennett B et al (2013) The controls on the composition of biodegraded oils in the deep subsurface – Part 3. The impact of microorganism distribution on petroleum geochemical gradients in biodegraded petroleum reservoirs. Org Geochem 56:94–105CrossRefGoogle Scholar
  11. 11.
    Head IM, Jones DM, Larter SR (2003) Biological activity in the deep subsurface and the origin of heavy oil. Nature 426(6964):344–352CrossRefPubMedGoogle Scholar
  12. 12.
    Magot M (2005) Indigenous microbial communities in oil fields. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM Press, Washington, pp 21–33CrossRefGoogle Scholar
  13. 13.
    Salter SJ et al (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol 12:87CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Kallmeyer J et al (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci U S A 109(40):16213–16216CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kieft TL (2010) Sampling the deep sub-surface using drilling and coring techniques. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Heidelberg, pp 3427–3441CrossRefGoogle Scholar
  16. 16.
    Yanagawa K et al (2013) The first microbiological contamination assessment by deep-sea drilling and coring by the D/V Chikyu at the Iheya North hydrothermal field in the Mid-Okinawa Trough (IODP Expedition 331). Front Microbiol 4Google Scholar
  17. 17.
    Smith DC et al (2000) Tracer-based estimates of drilling-induced microbial contamination of deep sea crust. Geomicrobiol J 17(3):207–219CrossRefGoogle Scholar
  18. 18.
    Smith DC et al (2000) Methods for quantifying potential microbial contamination during deep ocean coring. ODP Technical NoteGoogle Scholar
  19. 19.
    Fournelle HJ, Day EK, Page WB (1957) Experimental ground water pollution at Anchorage, Alaska. Public Health Rep 72(3):203–209CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Juck DF et al (2005) Utilization of fluorescent microspheres and a green fluorescent protein-marked strain for assessment of microbiological contamination of permafrost and ground ice core samples from the Canadian High Arctic. Appl Environ Microbiol 71(2):1035–1041CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Beeman RE, Suflita JM (1989) Evaluation of deep subsurface sampling procedures using serendipitous microbial contaminants as tracer organisms. Geomicrobiol J 7(4):223–233CrossRefGoogle Scholar
  22. 22.
    Lehman RM et al (1995) Combined microbial community-level analyses for quality assurance of terrestrial subsurface cores. J Microbiol Methods 22(3):263–281CrossRefGoogle Scholar
  23. 23.
    Kotlar HK et al (2011) High coverage sequencing of DNA from microorganisms living in an oil reservoir 2.5 kilometres subsurface. Environ Microbiol Rep 3(6):674–681CrossRefPubMedGoogle Scholar
  24. 24.
    Marquis RE, Matsumura P (1978) Microbial life under pressure. In: Kushner DJ (ed) Microbial life in extreme environments. Academic, London, pp 105–158Google Scholar
  25. 25.
    Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochim Biophys Acta 1595(1-2):367–381CrossRefPubMedGoogle Scholar
  26. 26.
    Parkes RJ et al (2009) In: Collett T et al (eds) Technology for high-pressure sampling and analysis of deep-sea sediments, associated gas hydrates, and deepbiosphere processes, in natural gas hydrates—Energy resource potential and associated geologic hazards: AAPG Memoir. The American Association of Petroleum Geologists, pp 672–683Google Scholar
  27. 27.
    Bale SJ et al (1997) Desulfovibrio profundus sp. nov., a novel barophilic sulfate-reducing bacterium from deep sediment layers in the Japan Sea. Int J Syst Bacteriol 47(2):515–521CrossRefPubMedGoogle Scholar
  28. 28.
    Binga EK, Lasken RS, Neufeld JD (2008) Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology. ISME J 2(3):233–241CrossRefPubMedGoogle Scholar
  29. 29.
    Woyke T et al (2011) Decontamination of MDA reagents for single cell whole genome amplification. PLoS One 6(10), e26161CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Rajendhran J, Gunasekaran P (2008) Strategies for accessing soil metagenome for desired applications. Biotechnol Adv 26(6):576–590CrossRefPubMedGoogle Scholar
  31. 31.
    Silander K, Saarela J (2008) Whole genome amplification with Phi29 DNA polymerase to enable genetic or genomic analysis of samples of low DNA yield. Methods Mol Biol 439:1–18CrossRefPubMedGoogle Scholar
  32. 32.
    Pel J et al (2009) Nonlinear electrophoretic response yields a unique parameter for separation of biomolecules. Proc Natl Acad Sci U S A 106(35):14796–14801CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Ritalahti KM et al (2010) Groundwater sampling for nucleic acid biomarker analysis. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Heidelberg, pp 3407–3418CrossRefGoogle Scholar
  34. 34.
    Van de Peer Y, Chapelle S, De Wachter R (1996) A quantitative map of nucleotide substitution rates in bacterial rRNA. Nucleic Acids Res 24(17):3381–3391CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Chakravorty S et al (2007) A detailed analysis of 16S ribosomal RNA gene segments for the diagnosis of pathogenic bacteria. J Microbiol Methods 69(2):330–339CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Baker GC, Smith JJ, Cowan DA (2003) Review and re-analysis of domain-specific 16S primers. J Microbiol Methods 55(3):541–555CrossRefPubMedGoogle Scholar
  37. 37.
    Liu Z et al (2008) Accurate taxonomy assignments from 16S rRNA sequences produced by highly parallel pyrosequencers. Nucleic Acids Res 36(18), e120CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Liu Z et al (2007) Short pyrosequencing reads suffice for accurate microbial community analysis. Nucleic Acids Res 35(18), e120CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Wang Y, Qian PY (2009) Conservative fragments in bacterial 16S rRNA genes and primer design for 16S ribosomal DNA amplicons in metagenomic studies. PLoS One 4(10), e7401CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Nossa CW et al (2010) Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J Gastroenterol 16(33):4135–4144CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Meyer M, Stenzel U, Hofreiter M (2008) Parallel tagged sequencing on the 454 platform. Nat Protoc 3(2):267–278CrossRefPubMedGoogle Scholar
  42. 42.
    Armougom F, Raoult D (2008) Use of pyrosequencing and DNA barcodes to monitor variations in Firmicutes and Bacteroidetes communities in the gut microbiota of obese humans. BMC Genomics 9:576CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Lane DJ et al (1985) Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82(20):6955–6959CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    DeAngelis MM, Wang DG, Hawkins TL (1995) Solid-phase reversible immobilization for the isolation of PCR products. Nucleic Acids Res 23(22):4742–4743CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Ishoey T et al (2008) Genomic sequencing of single microbial cells from environmental samples. Curr Opin Microbiol 11(3):198–204CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Lasken RS (2009) Genomic DNA amplification by the multiple displacement amplification (MDA) method. Biochem Soc Trans 37(Pt 2):450–453CrossRefPubMedGoogle Scholar
  47. 47.
    Abulencia CB et al (2006) Environmental whole-genome amplification to access microbial populations in contaminated sediments. Appl Environ Microbiol 72(5):3291–3301CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Quince C et al (2011) Removing noise from pyrosequenced amplicons. BMC Bioinform 12:38CrossRefGoogle Scholar
  49. 49.
    DeSantis TZ et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72(7):5069–5072CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Pruesse E et al (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Cole JR et al (2005) The Ribosomal Database Project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res 33(Database issue):D294–D296CrossRefPubMedGoogle Scholar
  52. 52.
    Caporaso JG et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–336CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Schloss PD et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75(23):7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Meyer F et al (2008) The metagenomics RAST server – a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinform 9:386CrossRefGoogle Scholar
  55. 55.
    Chevreux B et al (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. Genome Res 14(6):1147–1159CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Namiki T et al (2012) MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res 40(20), e155CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Afiahayati KS, Sakakibara Y (2015) MetaVelvet-SL: an extension of the Velvet assembler to a de novo metagenomic assembler utilizing supervised learning. DNA Res 22(1):69–77CrossRefPubMedGoogle Scholar
  58. 58.
    Luo R et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1(1):18CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Peng Y et al (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28(11):1420–1428CrossRefPubMedGoogle Scholar
  60. 60.
    Scholz M, Lo CC, Chain PS (2014) Improved assemblies using a source-agnostic pipeline for MetaGenomic Assembly by Merging (MeGAMerge) of contigs. Sci Rep 4:6480CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Garcia Martin H et al (2006) Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities. Nat Biotechnol 24(10):1263–1269CrossRefPubMedGoogle Scholar
  62. 62.
    Diaz NN et al (2009) TACOA: taxonomic classification of environmental genomic fragments using a kernelized nearest neighbor approach. BMC Bioinform 10:56CrossRefGoogle Scholar
  63. 63.
    Brady A, Salzberg SL (2009) Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated Markov models. Nat Methods 6(9):673–676CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Noguchi H, Park J, Takagi T (2006) MetaGene: prokaryotic gene finding from environmental genome shotgun sequences. Nucleic Acids Res 34(19):5623–5630CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Besemer J, Borodovsky M (2005) GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Res 33(Web Server issue):W451–W454Google Scholar
  66. 66.
    Delcher AL et al (2007) Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23(6):673–679CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Karp PD, Paley S, Romero P (2002) The Pathway Tools software. Bioinformatics 18(Suppl 1):S225–S232CrossRefPubMedGoogle Scholar
  68. 68.
    Moriya Y et al (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35(Web Server issue):W182–W185Google Scholar
  69. 69.
    Li C et al (2009) SubpathwayMiner: a software package for flexible identification of pathways. Nucleic Acids Res 37(19), e131CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Green ML, Karp PD (2004) A Bayesian method for identifying missing enzymes in predicted metabolic pathway databases. BMC Bioinform 5:76CrossRefGoogle Scholar
  71. 71.
    Markowitz VM et al (2008) IMG/M: a data management and analysis system for metagenomes. Nucleic Acids Res 36(Database issue):D534–D538PubMedGoogle Scholar
  72. 72.
    Tan B, Nesbo C, Foght J (2014) Re-analysis of omics data indicates Smithella may degrade alkanes by addition to fumarate under methanogenic conditions. ISME J 8(12):2353–2356CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Leininger S et al (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442(7104):806–809CrossRefPubMedGoogle Scholar
  74. 74.
    Gilbert JA et al (2009) Potential for phosphonoacetate utilization by marine bacteria in temperate coastal waters. Environ Microbiol 11(1):111–125CrossRefPubMedGoogle Scholar
  75. 75.
    Gilbert JA et al (2008) Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLoS One 3(8), e3042CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Urich T et al (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One 3(6), e2527CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Roume H et al (2013) A biomolecular isolation framework for eco-systems biology. ISME J 7(1):110–121CrossRefPubMedGoogle Scholar
  78. 78.
    Wilmes P, Bond PL (2006) Metaproteomics: studying functional gene expression in microbial ecosystems. Trends Microbiol 14(2):92–97CrossRefPubMedGoogle Scholar
  79. 79.
    Schweder T, Markert S, Hecker M (2008) Proteomics of marine bacteria. Electrophoresis 29(12):2603–2616CrossRefPubMedGoogle Scholar
  80. 80.
    Toyoda A et al (2009) Isolation and identification of cellulose-binding proteins from sheep rumen contents. Appl Environ Microbiol 75(6):1667–1673CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Turnbaugh PJ, Gordon JI (2008) An invitation to the marriage of metagenomics and metabolomics. Cell 134(5):708–713CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Nicolas Tsesmetzis
    • 1
  • Michael J. Maguire
    • 2
  • Ian M. Head
    • 2
    Email author
  • Bart P. Lomans
    • 3
  1. 1.Shell International Exploration and Production, Inc.HoustonUSA
  2. 2.School of Civil Engineering and Geosciences, Newcastle UniversityNewcastle upon TyneUK
  3. 3.Shell Global Solutions International B.V.,RijswijkNetherlands

Personalised recommendations