Skip to main content

Mini Sediment Columns and Two-Dimensional Sediment Flow-Through Microcosms: Versatile Experimental Systems for Studying Biodegradation of Organic Contaminants in Groundwater Ecosystems

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Abstract

Groundwater ecosystems are our most important source for drinking water supply. The increasing pressure to our groundwater reservoirs from anthropogenic contamination is a major threat not only to the ecosystem but also to human health. Microbial transformation of quantitatively important organic contaminants, such as petroleum hydrocarbons, in aquifers is an ecosystem service of ecological as well as economic importance. However, key controls and limitations of biodegradation in situ are still poorly understood. Facing the limited accessibility of the subsurface, the complex structural heterogeneity, and the hidden temporal physical–chemical and biotic dynamics, bench-top experimental systems are necessary tools for a systematic and controlled investigation of key variables in contaminant removal processes at appropriate micro- and meso-scales. Here, we introduce mini sediment columns and two-dimensional sediment flow-through microcosms as complementary versatile experimental systems that offer a high degree of simplification, experimental control, and replication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwarzenbach RP, Egli T, Hofstetter TB et al (2010) Global water pollution and human health. Annu Rev Environ Resourc 35(1):109–136. doi:10.1146/annurev-environ-100809-125342

    Article  Google Scholar 

  2. Herman JS, Culver DC, Salzman J (2001) Groundwater ecosystems and the service of water purification. Stanford Environ Law J 20:479

    Google Scholar 

  3. Griebler C, Avramov M (2015) Groundwater ecosystem services: a review. Freshwat Sci 34(1):355–367. doi:10.1086/679903

    Article  Google Scholar 

  4. Danielopol DL, Griebler C, Gunatilaka A et al (2003) Present state and future prospects for groundwater ecosystems. Environ Conserv 30(2):104–130. doi:10.1017/S0376892903000109

    Article  CAS  Google Scholar 

  5. Chapelle FH (2001) Ground-water microbiology and geochemistry, 2nd edn. Wiley, New York

    Google Scholar 

  6. Chen CS, Shu Y, Wu S et al (2015) Assessing soil and groundwater contamination from biofuel spills. Environ Sci Process Impacts. doi:10.1039/c4em00443d

    Google Scholar 

  7. Wiedemeier TH (1999) Natural attenuation of fuels and chlorinated solvents in the subsurface. Wiley, New York

    Book  Google Scholar 

  8. Foght J (2008) Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J Mol Microbiol Biotechnol 15(2–3):93–120

    Article  CAS  PubMed  Google Scholar 

  9. Annweiler E, Michaelis W, Meckenstock RU (2001) Anaerobic cometabolic conversion of benzothiophene by a sulfate-reducing enrichment culture and in a tar-oil-contaminated aquifer. Appl Environ Microbiol 67(11):5077–5083. doi:10.1128/AEM.67.11.5077-5083.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meckenstock RU, Safinowski M, Griebler C (2004) Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiol Ecol 49(1):27–36. doi:10.1016/j.femsec.2004.02.019

    Article  CAS  PubMed  Google Scholar 

  11. Jobelius C, Ruth B, Griebler C et al (2011) Metabolites indicate hot spots of biodegradation and biogeochemical gradients in a high-resolution monitoring well. Environ Sci Technol 45(2):474–481. doi:10.1021/es1030867

    Article  CAS  PubMed  Google Scholar 

  12. Valavanidis A, Vlachogianni T, Fiotakis K et al (2013) Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int J Environ Res Public Health 10(9):3886–3907. doi:10.3390/ijerph10093886

    Article  PubMed  PubMed Central  Google Scholar 

  13. Gauthier PT, Norwood WP, Prepas EE et al (2014) Metal-PAH mixtures in the aquatic environment: a review of co-toxic mechanisms leading to more-than-additive outcomes. Aquat Toxicol 154:253–269. doi:10.1016/j.aquatox.2014.05.026

    Article  CAS  PubMed  Google Scholar 

  14. Fang J, Barcelona M (1998) Biogeochemical evidence for microbial community change in a jet fuel hydrocarbons-contaminated aquifer. Org Geochem 29(4):899–907. doi:10.1016/S0146-6380(98)00174-0

    Article  CAS  Google Scholar 

  15. Trautwein K, Kühner S, Wöhlbrand L et al (2008) Solvent stress response of the denitrifying bacterium “Aromatoleum aromaticum” strain EbN1. Appl Environ Microbiol 74(8):2267–2274. doi:10.1128/AEM.02381-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Griebler C, Lueders T (2009) Microbial biodiversity in groundwater ecosystems. Freshwat Biol 54(4):649–677. doi:10.1111/j.1365-2427.2008.02013.x

    Article  Google Scholar 

  17. Bauer RD, Rolle M, Bauer S et al (2009) Enhanced biodegradation by hydraulic heterogeneities in petroleum hydrocarbon plumes. J Contam Hydrol 105(1–2):56–68

    Article  CAS  PubMed  Google Scholar 

  18. Jessup CM, Kassen R, Forde SE et al (2004) Big questions, small worlds: microbial model systems in ecology. Trends Ecol Evol 19(4):189–197. doi:10.1016/j.tree.2004.01.008

    Article  PubMed  Google Scholar 

  19. Alfreider A, Krössbacher M, Psenner R (1997) Groundwater samples do not reflect bacterial densities and activity in subsurface systems. Water Res 31(4):832–840

    Article  CAS  Google Scholar 

  20. Griebler C, Mindl B, Slezak D et al (2002) Distribution patterns of attached and suspended bacteria in pristine and contaminated shallow aquifers studied with an in situ sediment exposure microcosm. Aquat Microb Ecol 28:117–129

    Article  Google Scholar 

  21. Zhou Y, Kellermann C, Griebler C (2012) Spatio-temporal patterns of microbial communities in a hydrologically dynamic pristine aquifer. FEMS Microbiol Ecol 81(1):230–242. doi:10.1111/j.1574-6941.2012.01371.x

    Article  CAS  PubMed  Google Scholar 

  22. Flynn TM, Sanford RA, Bethke CM (2008) Attached and suspended microbial communities in a pristine confined aquifer. Water Resour Res 44(7), W07425

    Article  Google Scholar 

  23. Anneser B, Pilloni G, Bayer A et al (2010) High resolution analysis of contaminated aquifer sediments and groundwater—what can be learned in terms of natural attenuation? Geomicrobiol J 27(2):130–142. doi:10.1080/01490450903456723

    Article  CAS  Google Scholar 

  24. Rizoulis A, Elliott DR, Rolfe SA et al (2013) Diversity of planktonic and attached bacterial communities in a phenol-contaminated sandstone aquifer. Microb Ecol 66(1):84–95. doi:10.1007/s00248-013-0233-0

    Article  CAS  PubMed  Google Scholar 

  25. Bauer RD, Rolle M, Kürzinger P et al (2009) Two-dimensional flow-through microcosms – versatile test systems to study biodegradation processes in porous aquifers. J Hydrol 369(3–4):284–295. doi:10.1016/j.jhydrol.2009.02.037

    Article  CAS  Google Scholar 

  26. Chi F, Amy GL (2004) Transport of anthracene and benz(a)anthracene through iron-quartz and three aquifer materials in laboratory columns. Chemosphere 55(4):515–524

    Article  CAS  PubMed  Google Scholar 

  27. Jose SC, Cirpka OA (2004) Measurement of mixing-controlled reactive transport in homogeneous porous media and its prediction from conservative tracer test data. Environ Sci Technol 38(7):2089–2096

    Article  CAS  PubMed  Google Scholar 

  28. Baumann T, Werth CJ (2005) Visualization of colloid transport through heterogeneous porous media using magnetic resonance imaging. Colloids Surf A Physicochem Eng Asp 265(1–3):2–10. doi:10.1016/j.colsurfa.2004.11.052

    Article  CAS  Google Scholar 

  29. Werth CJ, Zhang C, Brusseau ML et al (2010) A review of non-invasive imaging methods and applications in contaminant hydrogeology research. J Contam Hydrol 113(1–4):1–24. doi:10.1016/j.jconhyd.2010.01.001

    Article  CAS  PubMed  Google Scholar 

  30. Pan B, Tao S, Wu D et al (2011) Phenanthrene sorption/desorption sequences provide new insight to explain high sorption coefficients in field studies. Chemosphere 84(11):1578–1583. doi:10.1016/j.chemosphere.2011.05.051

    Article  CAS  PubMed  Google Scholar 

  31. Higgins CP, Luthy RG (2006) Sorption of perfluorinated surfactants on sediments. Environ Sci Technol 40(23):7251–7256. doi:10.1021/es061000n

    Article  CAS  PubMed  Google Scholar 

  32. Burgos WD, Pisutpaisal N (2006) Sorption of naphthoic acids and quinoline compounds to estuarine sediment. J Contam Hydrol 84(3–4):107–126. doi:10.1016/j.jconhyd.2005.12.008

    Article  CAS  PubMed  Google Scholar 

  33. Langenhoff AAM, Zehnder AJB, Schraa G (1996) Behaviour of toluene, benzene and naphthalene under anaerobic conditions in sediment columns. Biodegradation 7(3):267–274. doi:10.1007/BF00058186

    Article  CAS  Google Scholar 

  34. Hess A, Höhener P, Hunkeler D et al (1996) Bioremediation of a diesel fuel contaminated aquifer: simulation studies in laboratory aquifer columns. J Contam Hydrol 23(4):329–345

    Article  CAS  Google Scholar 

  35. Bosma TNP, Marlies E, Ballemans W et al (1996) Biotransformation of organics in soil columns and an infiltration area. Ground Water 34(1):49–56. doi:10.1111/j.1745-6584.1996.tb01864.x

    Article  CAS  Google Scholar 

  36. Haest PJ, Philips J, Springael D et al (2011) The reactive transport of trichloroethene is influenced by residence time and microbial numbers. J Contam Hydrol 119(1–4):89–98. doi:10.1016/j.jconhyd.2010.09.011

    Article  CAS  PubMed  Google Scholar 

  37. Thullner M (2010) Comparison of bioclogging effects in saturated porous media within one- and two-dimensional flow systems. Ecol Eng 36(2):176–196. doi:10.1016/j.ecoleng.2008.12.037

    Article  Google Scholar 

  38. Brielmann H, Lueders T, Schreglmann K et al (2011) Oberflächennahe Geothermie und ihre potenziellen Auswirkungen auf Grundwasserökosysteme. Grundwasser 16(2):77–91. doi:10.1007/s00767-011-0166-9

    Article  Google Scholar 

  39. Mellage A, Eckert D, Grösbacher M et al (2015) Dynamics of suspended and attached aerobic toluene degraders in small-scale flow-through sediment systems under growth and starvation conditions. Environ Sci Technol 49(12):7161–7169. doi:10.1021/es5058538

    Article  CAS  PubMed  Google Scholar 

  40. Barton JW, Ford RM (1995) Determination of effective transport coefficients for bacterial migration in sand columns. Appl Environ Microbiol 61(9):3329–3335

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Mösslacher F, Griebler C, Notenboom J (2001) Biomonitoring of groundwater systems: methods, applications and possible indicators among the groundwater biota. Groundwater ecology: a tool for management of water resources. Office for Official Publications of the European Communities, Luxemburg, pp 132–170

    Google Scholar 

  42. Bauer RD, Maloszewski P, Zhang Y et al (2008) Mixing-controlled biodegradation in a toluene plume — results from two-dimensional laboratory experiments. J Contam Hydrol 96(1–4):150–168. doi:10.1016/j.jconhyd.2007.10.008

    Article  CAS  PubMed  Google Scholar 

  43. Werth CJ, Cirpka OA, Grathwohl P (2006) Enhanced mixing and reaction through flow focusing in heterogeneous porous media. Water Resour Res 42(12), W12414. doi:10.1029/2005wr004511

    Article  Google Scholar 

  44. Jose SC, Rahman MA, Cirpka OA (2004) Large-scale sandbox experiment on longitudinal effective dispersion in heterogeneous porous media. Water Resour Res 40(12), W12415. doi:10.1029/2004WR003363

    Article  Google Scholar 

  45. Huang WE, Smith CC, Lerner DN et al (2002) Physical modelling of solute transport in porous media: evaluation of an imaging technique using UV excited fluorescent dye. Water Res 36(7):1843–1853. doi:10.1016/S0043-1354(01)00393-1

    Article  CAS  PubMed  Google Scholar 

  46. Loveland JP, Bhattacharjee S, Ryan JN et al (2003) Colloid transport in a geochemically heterogeneous porous medium: aquifer tank experiment and modeling. J Contam Hydrol 65(3–4):161–182. doi:10.1016/S0169-7722(02)00238-3

    Article  CAS  PubMed  Google Scholar 

  47. Weisbrod N, Niemet MR, Rockhold ML et al (2004) Migration of saline solutions in variably saturated porous media. J Contam Hydrol 72(1–4):109–133. doi:10.1016/j.jconhyd.2003.10.013

    Article  CAS  PubMed  Google Scholar 

  48. Rahman MM, Liedl R, Grathwohl P (2004) Sorption kinetics during macropore transport of organic contaminants in soils: laboratory experiments and analytical modeling. Water Resour Res 40(1), W01503. doi:10.1029/2002WR001946

    Article  Google Scholar 

  49. Cirpka OA, Windfuhr C, Bisch G et al (1999) Microbial reductive dechlorination in large-scale sandbox model. J Environ Eng 125(9):861–870. doi:10.1061/(ASCE)0733-9372(1999)125:9(861)

    Article  CAS  Google Scholar 

  50. Cirpka OA, Valocchi AJ (2007) Two-dimensional concentration distribution for mixing-controlled bioreactive transport in steady state. Adv Water Resour 30(6–7):1668–1679. doi:10.1016/j.advwatres.2006.05.022

    Article  CAS  Google Scholar 

  51. Chiogna G, Eberhardt C, Grathwohl P et al (2010) Evidence of compound-dependent hydrodynamic and mechanical transverse dispersion by multitracer laboratory experiments. Environ Sci Technol 44(2):688–693. doi:10.1021/es9023964

    Article  CAS  PubMed  Google Scholar 

  52. Cirpka OA, de Barros FPJ, Chiogna G et al (2011) Stochastic flux-related analysis of transverse mixing in two-dimensional heterogeneous porous media. Water Resour Res 47(6), W06515. doi:10.1029/2010WR010279

    Article  Google Scholar 

  53. Ballarini E, Beyer C, Bauer RD et al (2014) Model based evaluation of a contaminant plume development under aerobic and anaerobic conditions in 2D bench-scale tank experiments. Biodegradation 25(3):351–371. doi:10.1007/s10532-013-9665-y

    Article  CAS  PubMed  Google Scholar 

  54. Cirpka OA, Rolle M, Chiogna G et al (2012) Stochastic evaluation of mixing-controlled steady-state plume lengths in two-dimensional heterogeneous domains. J Contam Hydrol 138–139:22–39. doi:10.1016/j.jconhyd.2012.05.007

    Article  PubMed  Google Scholar 

  55. Rolle M, Chiogna G, Bauer R et al (2010) Isotopic fractionation by transverse dispersion: flow-through microcosms and reactive transport modeling study. Environ Sci Technol 44(16):6167–6173. doi:10.1021/es101179f

    Article  CAS  PubMed  Google Scholar 

  56. Rolle M, Hochstetler D, Chiogna G et al (2012) Experimental investigation and pore-scale modeling interpretation of compound-specific transverse dispersion in porous media. Transp Porous Media 93(3):347–362

    Article  CAS  Google Scholar 

  57. Werner D, Karapanagioti HK, Sabatini DA (2012) Assessing the effect of grain-scale sorption rate limitations on the fate of hydrophobic organic groundwater pollutants. J Contam Hydrol 129–130:70–79. doi:10.1016/j.jconhyd.2011.10.002

    Article  PubMed  Google Scholar 

  58. Zhang C, Werth CJ, Webb AG (2002) A magnetic resonance imaging study of dense nonaqueous phase liquid dissolution from angular porous media. Environ Sci Technol 36(15):3310–3317. doi:10.1021/es011497v

    Article  CAS  PubMed  Google Scholar 

  59. Zhang C, Werth CJ, Webb AG (2007) Characterization of NAPL source zone architecture and dissolution kinetics in heterogeneous porous media using magnetic resonance imaging. Environ Sci Technol 41(10):3672–3678. doi:10.1021/es061675q

    Article  CAS  PubMed  Google Scholar 

  60. Sharma PK, McInerney MJ (1994) Effect of grain size on bacterial penetration, reproduction, and metabolic activity in porous glass bead chambers. Appl Environ Microbiol 60(5):1481–1486

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Strobel KL, McGowan S, Bauer RD et al (2011) Chemotaxis increases vertical migration and apparent transverse dispersion of bacteria in a bench-scale microcosm. Biotechnol Bioeng 108(9):2070–2077. doi:10.1002/bit.23159

    Article  CAS  PubMed  Google Scholar 

  62. Oates PM, Castenson C, Harvey CF et al (2005) Illuminating reactive microbial transport in saturated porous media: demonstration of a visualization method and conceptual transport model. J Contam Hydrol 77(4):233–245. doi:10.1016/j.jconhyd.2004.12.005

    Article  CAS  PubMed  Google Scholar 

  63. Nambi IM, Werth CJ, Sanford RA et al (2003) Pore-scale analysis of anaerobic halorespiring bacterial growth along the transverse mixing zone of an etched silicon pore network. Environ Sci Technol 37(24):5617–5624. doi:10.1021/es034271w

    Article  CAS  PubMed  Google Scholar 

  64. Thullner M, Zeyer J, Kinzelbach W (2002) Influence of microbial growth on hydraulic properties of pore networks. Transp Porous Media 49(1):99–122. doi:10.1023/A:1016030112089

    Article  Google Scholar 

  65. Thullner M, Mauclaire L, Schroth MH et al (2002) Interaction between water flow and spatial distribution of microbial growth in a two-dimensional flow field in saturated porous media. J Contam Hydrol 58(3–4):169–189. doi:10.1016/S0169-7722(02)00033-5

    Article  CAS  PubMed  Google Scholar 

  66. Thullner M, Schroth MH, Zeyer J et al (2004) Modeling of a microbial growth experiment with bioclogging in a two-dimensional saturated porous media flow field. J Contam Hydrol 70(1–2):37–62. doi:10.1016/j.jconhyd.2003.08.008

    Article  CAS  PubMed  Google Scholar 

  67. Huang WE, Oswald SE, Lerner DN et al (2003) Dissolved oxygen imaging in a porous medium to investigate biodegradation in a plume with limited electron acceptor supply. Environ Sci Technol 37(9):1905–1911. doi:10.1021/es020128b

    Article  CAS  PubMed  Google Scholar 

  68. Chu M, Kitanidis PK, McCarty PL (2005) Modeling microbial reactions at the plume fringe subject to transverse mixing in porous media: when can the rates of microbial reaction be assumed to be instantaneous? Water Resour Res 41(6), W06002. doi:10.1029/2004wr003495

    Article  Google Scholar 

  69. Rees HC, Oswald SE, Banwart SA et al (2007) Biodegradation processes in a laboratory-scale groundwater contaminant plume assessed by fluorescence imaging and microbial analysis. Appl Environ Microbiol 73(12):3865–3876. doi:10.1128/AEM.02933-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Rolle M, Bauer RD, Griebler C et al (2007) Aerobic degradation of toluene plume in homogeneous and heterogeneous porous media. In: Trefry MG (ed) Groundwater quality 2007: securing groundwater quality in urban and industrial environments: program and proceedings of the sixth international IAHS Groundwater Quality conference. International Association of Hydrological Sciences, Wembley, pp 356–363

    Google Scholar 

  71. Beyer C, Ballarini E, Bauer RD et al (2012) Interpretation of hydrocarbon plume biodegradation in 2-D bench-scale tank experiments by reactive transport modelling. In: Oswald SE, Kolditz O, Attinger S (eds) Models - repositories of knowledge: proceedings of ModelCARE2011 held at Leipzig, September 2011. IAHS Press, Wallingford

    Google Scholar 

  72. Eckert D, Kürzinger P, Bauer R et al (2015) Fringe-controlled biodegradation under dynamic conditions: quasi 2-D flow-through experiments and reactive-transport modeling. J Contam Hydrol 172:100–111. doi:10.1016/j.jconhyd.2014.11.003

    Article  CAS  PubMed  Google Scholar 

  73. Anneser B, Einsiedl F, Meckenstock RU et al (2008) High-resolution monitoring of biogeochemical gradients in a tar oil-contaminated aquifer. Appl Geochem 23(6):1715–1730. doi:10.1016/j.apgeochem.2008.02.003

    Article  CAS  Google Scholar 

  74. Meckenstock RU, Lueders T, Griebler C et al (2010) Microbial hydrocarbon degradation at coal gasification plants. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2293–2312

    Chapter  Google Scholar 

  75. Klenk I, Grathwohl P (2002) Transverse vertical dispersion in groundwater and the capillary fringe. J Contam Hydrol 58(1–2):111–128. doi:10.1016/S0169-7722(02)00011-6

    Article  CAS  PubMed  Google Scholar 

  76. Herzyk A, Maloszewski P, Qiu S et al (2014) Intrinsic potential for immediate biodegradation of toluene in a pristine, energy-limited aquifer. Biodegradation 25(3):325–336. doi:10.1007/s10532-013-9663-0

    Article  CAS  PubMed  Google Scholar 

  77. Qiu S, Eckert D, Cirpka OA et al (2013) Direct experimental evidence of non-first order degradation kinetics and sorption-induced isotopic fractionation in a mesoscale aquifer: 13C/12C analysis of a transient toluene pulse. Environ Sci Technol 47(13):6892–6899. doi:10.1021/es304877h

    Article  CAS  PubMed  Google Scholar 

  78. Ye Y, Chiogna G, Cirpka O et al (2015) Experimental investigation of compound-specific dilution of solute plumes in saturated porous media: 2-D vs. 3-D flow-through systems. J Contam Hydrol 172:33–47. doi:10.1016/j.jconhyd.2014.11.002

    Article  CAS  PubMed  Google Scholar 

  79. Chrysikopoulos CV, Syngouna VI, Vasiliadou IA et al (2012) Transport of Pseudomonas putida in a 3-D bench scale experimental aquifer. Transp Porous Media 94(3):617–642. doi:10.1007/s11242-012-0015-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Griebler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Hofmann, R., Grösbacher, M., Griebler, C. (2016). Mini Sediment Columns and Two-Dimensional Sediment Flow-Through Microcosms: Versatile Experimental Systems for Studying Biodegradation of Organic Contaminants in Groundwater Ecosystems. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2016_210

Download citation

  • DOI: https://doi.org/10.1007/8623_2016_210

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53107-5

  • Online ISBN: 978-3-662-53108-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics