Skip to main content

High Pressure Cultivation of Hydrocarbonoclastic Aerobic Bacteria

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Abstract

Hydrocarbon-degrading microorganisms capable to use hydrocarbons as a sole source of carbon and energy are widely distributed in marine environments (Yakimov et al., Curr Opin Biotechnol 18:257–266, 2007) occupying practically all habitats, including those characterized by extremely high hydrostatic pressure, i.e. deep-sea abysses and ocean bottoms. From April to July 2010, 779 million litres of oil were released into the Gulf of Mexico during the explosion of the drilling rig Deepwater Horizon (DWH) (Atlas and Hazen, Environ Sci Technol 45:6709–6715, 2011). This event, described as the largest marine oil spill in human history (Schedler et al., AMB Express 4:77, 2014), occurred at the depth of 1,500 m, corresponding to a hydrostatic pressure of 15 MPa. Substantial bacterial blooms were observed in the bathypelagic layer of the water column at the depth of approximately 1,000–1,200 m, indicating that indigenous hydrocarbon-degrading bacteria were enriched by the released crude oil and methane (Bælum et al., Environ Microbiol 14:2405–2416, 2012).

This dramatic event pointed to a very important issue that has been currently overlooked. Indeed, there are vanishingly few available publications related to studies on physiology and cultivation of hydrocarbon-degrading microorganisms under elevated hydrostatic pressure. Although pressure-induced differences in growth and hydrocarbon utilization were highlighted elsewhere (Schedler et al., AMB Express 4:77, 2014; Bælum et al., Environ Microbiol 14:2405–2416, 2012; Grossi et al., Environ Microbiol 12:2020–2033, 2010; Schwarz et al., Appl Microbiol 28:982–986, 1974; Schwarz et al., Can J Microbiol 21:682–687, 1975), comprehensive analyses of bacterial degradation of hydrocarbons conducted under high pressure are yet to be performed (Grossi et al., Environ Microbiol 12:2020–2033, 2010; Schwarz et al., Appl Microbiol 28:982–986, 1974; Schwarz et al., Can J Microbiol 21:682–687, 1975). Thus, the study of the fate of hydrocarbons once released in the ocean shows that the effect of pressure cannot be neglected. This chapter includes the main guidelines on how to incubate hydrocarbon-degrading bacteria under high hydrostatic pressure.

The original version of this chapter was revised. An erratum to the chapter can be found at DOI 10.1007/8623_2017_231

An erratum to this chapter can be found at http://dx.doi.org/10.1007/8623_2017_231

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jannasch HW, Taylor CD (1984) Deep sea microbiology. Annu Rev Microbiol 38:487–514

    Article  CAS  PubMed  Google Scholar 

  2. Bartlett DH (2002) Pressure effects on in vivo microbial processes. Biochem Biophys Acta 1595:367–381

    CAS  PubMed  Google Scholar 

  3. Schedler M, Hiessl R, Valladares Juárez AG, Gust G, Müller R (2014) Effect of high pressure on hydrocarbon-degrading bacteria. AMB Express 4:77. doi:10.1186/s13568-014-0077-0

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bælum J, Borglin S, Chakraborty R, Fortney JL, Lamendella R, Mason OU, Auer M, Zemla M, Bill M, Conrad ME, Malfatti SA, Tringe SG, Holman H-Y, Hazen TC, Jansson JK (2012) Deep-sea bacteria enriched by oil and dispersant from the Deepwater Horizon spill. Environ Microbiol 14:2405–2416. doi:10.1111/j.1462-2920.2012.02780.x

    Article  PubMed  Google Scholar 

  5. Grossi V, Yakimov MM, Al Ali B, Tapilatu Y, Cuny P, Goutx M, La Cono V, Giuliano L, Tamburini C (2010) Hydrostatic pressure affects membrane and storage lipid compositions of the piezotolerant hydrocarbon-degrading Marinobacter hydrocarbonoclasticus strain #5. Environ Microbiol 12:2020–2033. doi:10.1111/j.1462-2920.2010.02213.x

    Article  CAS  PubMed  Google Scholar 

  6. Schwarz JR, Walker JD, Colwell RR (1974) Deep-sea bacteria: growth and utilization of hydrocarbons at ambient and in situ pressure. Appl Microbiol 28:982–986

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Schwarz JR, Walker JD, Colwell RR (1975) Deep-sea bacteria: growth and utilization of n-hexadecane at in situ temperature and pressure. Can J Microbiol 21:682–687

    Article  CAS  PubMed  Google Scholar 

  8. ZoBell CE, Johnson FH (1949) The influence of hydrostatic pressure on the growth and viability of terrestrial and marine bacteria. J Bacteriol 57:179–189

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Yayanos AA (1995) Microbiology to 10,500 meters in the deep-sea. Annu Rev Microbiol 49:777–805

    Article  CAS  PubMed  Google Scholar 

  10. Fang J, Zhang L, Bazylinski DA (2010) Deep-sea piezosphere and piezophiles: geomicrobiology and biogeochemistry. Trends Microbiol 18:413–422

    Article  CAS  PubMed  Google Scholar 

  11. Kato C (2011) Distribution of piezophiles. In: Horikoshi K (ed) Extremophiles handbook. Springer, Tokyo, pp 643–655

    Chapter  Google Scholar 

  12. Tamburini C, Boutrif M, Garel M, Colwell RR, Deming JW (2013) Prokaryotic responses to hydrostatic pressure in the ocean a review. Environ Microbiol 15:1262–1274. doi:10.1111/1462-2920.12084

    Article  CAS  PubMed  Google Scholar 

  13. Lauro FM, Tran K, Vezzi A, Vitulo N, Valle G, Bartlett DH (2008) Large-scale transposon mutagenesis of Photobacterium profundum SS9 reveals new genetic loci important for growth at low temperature and high pressure. J Bacteriol 190:1699–1709

    Article  CAS  PubMed  Google Scholar 

  14. Kato C, Sato T, Abe F, Ohmae E, Tamegai H, Nakasone K et al (2008) Protein adaptation to high-pressure environments. In: Thomas T, Siddiqui KS (eds) Protein adaptation in extremophiles, Molecular anatomy and physiology of proteins series. Nova Science Publisher, New York, pp 167–191

    Google Scholar 

  15. Shiller AM, Joung D (2012) Nutrient depletion as a proxy for microbial growth in Deepwater Horizon subsurface oil/gas plumes. Environ Res Lett 7:045301. doi:10.1088/1748-9326/7/4/045301

    Article  Google Scholar 

  16. Atlas RM, Hazen TC (2011) Oil biodegradation and bioremediation: a tale of the two worst spills in U.S. history. Environ Sci Technol 45:6709–6715. doi:10.1021/es2013227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hazen TC, Dubinsky EA, DeSantis TZ, Andersen GL, Piceno YM, Singh N et al (2010) Deep-sea oil plume enriches indigenous oil-degrading bacteria. Science 330:204–208. doi:10.1126/science.1195979

    Article  CAS  PubMed  Google Scholar 

  18. Kessler JD, Valentine DL, Redmond MC, Du M, Chan EW, Mendes SD, Quiroz EW, Villanueva CJ, Shusta SS, Werra LM, Yvon-Lewis SA, Weber TC (2011) A persistent oxygen anomaly reveals the fate of spilled methane in the Deep Gulf of Mexico. Science 331:312–315. doi:10.1126/science.1199697

    Article  CAS  PubMed  Google Scholar 

  19. Redmond MC, Valentine DL (2012) Natural gas and temperature structured a microbial community response to the Deepwater Horizon oil spill. Proc Natl Acad Sci U S A 109:20292–20297. doi:10.1073/pnas.1108756108

    Article  CAS  PubMed  Google Scholar 

  20. Valentine DL, Mezić I, Maćešić S, Črnjarić-Žic N, Ivić S, Hogan PJ, Fonoberov VA, Loire S (2012) Dynamic autoinoculation and the microbial ecology of a deep water hydrocarbon irruption. Proc Natl Acad Sci U S A 109:20286–20291. doi:10.1073/pnas.1108820109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cui Z, Lai Q, Dong C, Shao Z (2008) Biodiversity of polycyclic aromatic hydrocarbon-degrading bacteria from deep sea sediments of the Middle Atlantic Ridge. Environ Microbiol 10:2138–2149. doi:10.1111/j.1462-2920.2008.01637.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Tapilatu Y, Acquaviva M, Guigue C, Miralles G, Bertrand J-C, Cuny P (2010) Isolation of alkane-degrading bacteria from deep-sea Mediterranean sediments. Lett Appl Microbiol 50:234–236. doi:10.1111/j.1472-765X.2009.02766.x

    Article  CAS  PubMed  Google Scholar 

  23. Wang B, Lai Q, Cui Z, Tan T, Shao Z (2008) A pyrene-degrading consortium from deep-sea sediment of the West Pacific and its key member Cycloclasticus sp. P1. Environ Microbiol 10:1948–1963. doi:10.1111/j.1462-2920.2008.01611.x

    Article  CAS  PubMed  Google Scholar 

  24. Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18:257–266. doi:10.1016/j.copbio.2007.04.006

    Article  CAS  PubMed  Google Scholar 

  25. Gibson DT, Roberts RL, Wells MC, Kobal VM (1973) Oxidation of biphenyl by a Beijerinckia species. Biochem Biophys Res Commun 50:211–219. doi:10.1016/0006-291X(73)90828-0

    Article  CAS  PubMed  Google Scholar 

  26. Lindo-Atichati D, Paris CB, Le Hénaff M, Schedler M, Valladares Juárez AG, Müller (2014) Simulating the effects of droplet size, high-pressure biodegradation, and variable flow rate on the subsea evolution of deep plumes from the Macondo blowout. Deep-Sea Res II Top Stud Oceanogr (in press). doi:10.1016/j.dsr2.2014.01.011

    Google Scholar 

  27. Grossart H-P, Gust G (2009) Hydrostatic pressure affects physiology and community structure of marine bacteria during settling to 4000 m: an experimental approach. Mar Ecol Prog Ser 390:97–104

    Article  Google Scholar 

  28. Tamburini C, Garcin J, Bianchi A (2003) Role of deep-sea bacteria in organic matter mineralization and adaptation to hydrostatic pressure conditions in the NW Mediterranean Sea. Aquat Microb Ecol 32:209–218

    Article  Google Scholar 

  29. Tamburini C, Goutx M, Guigue C, Garel M, Lefèvre D, Charrière B et al (2009) Effects of hydrostatic pressure on microbial alteration of sinking fecal pellets. Deep Sea Res Part II Top Stud Oceanogr 56:1533–1546

    Article  CAS  Google Scholar 

  30. Staley JT (1968) Prosthecomicrobium and Ancalomicrobium: new fresh water prosthecate bacteria. J Bacteriol 95:1942

    Google Scholar 

  31. Shelton DR, Tiedje JM (1984) Isolation and partial characterization of bacteria in an anaerobic consortium that mineralizes 3-chlorobenzoic acid. Appl Environ Microbiol 48:840–848

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yakimov MM, Giuliano L, Gentile G, Crisafi E, Chernikova TN, Abraham WR et al (2003) Oleispira Antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int J Syst Evol Microbiol 53:779–785. doi:10.1099/ijs.0.02366-0

    Article  CAS  PubMed  Google Scholar 

  33. Martini S, Garel M, Nerini D, Grossi V, Pacton M, Casalot L, Cuny P, Tamburini C (2013) Effects of hydrostatic pressure on growth and luminescence of a moderately-piezophilic luminous bacteria Photobacterium phosphoreum ANT-2200. PLoS One 8(6):e66580. doi:10.1371/journal.pone.0066580. Print 2013

    Google Scholar 

  34. Dyksterhouse SE, Gray JP, Herwig RP, Lara JC, Staley JT (1995) Cycloclasticus pugetiigen. nov., sp. nov., an aromatic hydrocarbon-degrading bacterium from marine sediments. Int J Syst Bacteriol 45:116–123. doi:10.1099/00207713-45-1-116

    Article  CAS  PubMed  Google Scholar 

  35. Vezzi A, Campanaro S, D’Angelo M, Simonato F, Vitulo N, Lauro FM, Cestaro A, Malacrida G, Simionati B, Cannata N, Romualdi C, Bartlett DH, Valle G (2005) Life at depth: Photobacterium profundum genome sequence and expression analysis. Science 307:1459. doi:10.1126/science.1103341

    Article  CAS  PubMed  Google Scholar 

  36. Fine RA and Millero FJ (1973). Compressibility of water as a function of temperature and pressure. J Chem Phys 59(10):5529. Bibcode:1973JChPh..59.5529F. doi:10.1063/1.1679903

    Google Scholar 

  37. Nave R (2007) Bulk elastic properties. HyperPhysics. Georgia State University. Retrieved 26-10-2007

    Google Scholar 

Download references

Acknowledgements

This work was supported by research fund from European Commission’s Program under MicroB3 Project (Contract FP7-OCEAN.2011-2-287589). This work was supported by research fund from European Commission’s Program under the research project Kill*Spill ‘Integrated Biotechnological Solutions for Combating Marine Oil Spills’ (FP7-KBBE-2012.3.5-01-4 Project 312139). We thank Dr Gina La Spada and Enzo Messina for their excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Smedile .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Smedile, F. et al. (2016). High Pressure Cultivation of Hydrocarbonoclastic Aerobic Bacteria. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2016_208

Download citation

  • DOI: https://doi.org/10.1007/8623_2016_208

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53107-5

  • Online ISBN: 978-3-662-53108-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics