Skip to main content

Protocols for the Quantification of Dimethyl Sulfide (DMS) and Other Volatile Organic Compounds in Aquatic Environments

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Aquatic environments produce a range of volatile organic compounds (VOCs) that can transfer into the atmosphere and affect climate. Much of our understanding on the biogeochemistry of volatiles in seawater stems from research on the biogenic trace gas dimethyl sulfide (DMS). Here, we describe four protocols for the quantification of DMS and other VOCs in aqueous samples that utilise direct injection or cryogenic enrichment techniques before separation and quantification using gas chromatography with flame photometric detection (GC-FPD). With few adjustments, the protocols can be customised to quantify a range of other gases including hydrocarbons such as isoprene and ethene, or halocarbons such as methyl chloride or bromoform. The limit of quantification for DMS is 1.5 pmol and the protocols range in sensitivities for DMS from 0.2 to 20 μM (direct injection of 200 μL headspace), 50 to 250 nM (headspace purging of 1.92 mL gaseous phase), 0.5 to 350 nM (in-vial purging of 3 mL aqueous phase), and the sub-nanomolar range for in-tube purging of sample volumes up to 200 mL. Two additional adaptations of the protocol include quantification of the biological DMS-precursor dimethylsulfoniopropionate (DMSP) and the DMS-oxidation product dimethyl sulfoxide (DMSO).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. WMO (1994) Scientific assessment of ozone depletion: World Meteorological Organization (WMO) global ozone research and monitoring project. Geneva

    Google Scholar 

  2. Guenther A et al (1995) A global model of natural volatile organic compound emissions. J Geophys Res Atmos 100:8873–8892

    Article  CAS  Google Scholar 

  3. Graedel TE (1978) Chemical compounds in the atmosphere. Academic Press, New York

    Google Scholar 

  4. Graedel TE, Hawkins DT, Claxton LD (1986) Atmospheric chemical compounds. Sources, occurrence and bioassay. Academic Press, Orlando

    Google Scholar 

  5. Goldstein AH, Galbally IE (2007) Known and unexplored organic constituents in the earth’s atmosphere. Environ Sci Technol 41:1514–1521

    Article  CAS  PubMed  Google Scholar 

  6. Fehsenfeld F et al (1992) Emissions of volatile organic compounds from vegetation and the implications for atmospheric chemistry. Glob Biogeochem Cycles 6:389–430

    Article  CAS  Google Scholar 

  7. Buszewski B et al (2007) Human exhaled air analytics: biomarkers of diseases. Biomed Chromatogr 21:553–566

    Article  CAS  PubMed  Google Scholar 

  8. Huybrechts T, Dewulf J, Van Langenhove H (2005) Priority volatile organic compounds in surface waters of the southern North Sea. Environ Pollut 133:255–264

    Article  CAS  PubMed  Google Scholar 

  9. Bravo-Linares CM, Mudge SM (2009) Temporal trends and identification of the sources of volatile organic compounds in coastal seawater. J Environ Monit 11:628–641

    Article  CAS  PubMed  Google Scholar 

  10. Simó R (2001) Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends Ecol Evol 16:287–294

    Article  PubMed  Google Scholar 

  11. Lana A et al (2011) An updated climatology of surface dimethylsulfide concentrations and emission fluxes in the global ocean. Glob Biogeochem Cycles 25, GB1004

    Google Scholar 

  12. Jones G et al (2007) Factors affecting the cycling of dimethylsulfide and dimethylsulfoniopropionate in coral reef waters of the Great Barrier Reef. Environ Chem 4:310–322

    CAS  Google Scholar 

  13. Malin G et al (1993) Dimethylsulphide and dimethylsulphoniopropionate in the northeast Atlantic during the summer coccolithophore bloom. Deep-Sea Res I 40:1487–1508

    Article  CAS  Google Scholar 

  14. Levasseur M (2013) Impact of Arctic meltdown on the microbial cycling of sulphur. Nat Geosci 6:691–700

    Article  CAS  Google Scholar 

  15. Asher EC et al (2011) High concentrations and turnover rates of DMS, DMSP and DMSO in Antarctic sea ice. Geophys Res Lett 38, L23609

    Article  Google Scholar 

  16. Bell TG et al (2013) Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed. Atmos Chem Phys 13:11073–11087

    Article  CAS  Google Scholar 

  17. Vogt M et al (2008) Laboratory inter-comparison of dissolved dimethyl sulphide (DMS) measurements using purge-and-trap and solid-phase microextraction techniques during a mesocosm experiment. Mar Chem 108:32–39

    Article  CAS  Google Scholar 

  18. Chambers ST et al (1987) Dimethylthetin can substitute for glycine betaine as an osmoprotectant molecule for Escherichia coli. J Bacteriol 169:4845–4847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Steinke M et al (2007) Substrate kinetics of DMSP-lyases in axenic cultures and mesocosm populations of Emiliania huxleyi. Aquat Sci 69:352–359

    Article  CAS  Google Scholar 

  20. Steinke M et al (2000) Determinations of dimethylsulphoniopropionate (DMSP) lyase activity using headspace analysis of dimethylsulphide (DMS). J Sea Res 43:233–244

    Article  CAS  Google Scholar 

  21. Steinke M et al (2011) Concentrations of dimethylsulfoniopropionate and dimethyl sulfide are strain-specific in symbiotic dinoflagellates (Symbiodinium sp., Dinophyceae). J Phycol 47:775–783

    Article  PubMed  Google Scholar 

  22. Shrivastava A, Gupta VB (2011) Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron Young Sci 2:21

    Article  Google Scholar 

  23. Andreae MO (1980) Determination of trace quantities of dimethylsulfoxide in aqueous solutions. Anal Chem 52:150–153

    Article  CAS  Google Scholar 

  24. Simó R, Grimalt JO, Albaiges J (1997) Dissolved dimethylsulphide, dimethylsulphoniopropionate and dimethylsulphoxide in western Mediterranean waters. Deep-Sea Res II 44:929–950

    Article  Google Scholar 

  25. Sander R (2015) Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos Chem Phys 15:4399–4981

    Article  CAS  Google Scholar 

  26. Klee MS (2012) Detectors. In: Poole CF (ed) Gas chromatography. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgements

We thank two anonymous reviewers for their comments and suggestions. Data for the ethene calibration in Fig. 5 were kindly provided by Dr Ina Plettner. We are grateful for the technical support provided by Sue Corbett, Tania Cresswell-Maynard and John Green.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Steinke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Franchini, F., Steinke, M. (2016). Protocols for the Quantification of Dimethyl Sulfide (DMS) and Other Volatile Organic Compounds in Aquatic Environments. In: McGenity, T., Timmis, K., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2016_206

Download citation

  • DOI: https://doi.org/10.1007/8623_2016_206

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52791-7

  • Online ISBN: 978-3-662-52793-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics