• Heidi L. Gough
  • Jeppe L. NielsenEmail author
Part of the Springer Protocols Handbooks book series (SPH)


The ability of microorganisms to transform pollutants is well documented. However, in many cases microbial communities with the desired capabilities may develop too slowly or may not be sustained. In these cases, manipulation of the microbial composition may be advantageous. Bioremediation has been established as an environmental friendly treatment capable of improving the removal of the contaminants in natural and environmentally systems by circumventing insufficient response time and initiating the removal with a minimal lag phase. Bioremediation exploits the microbial ability to transform contaminants into less harmful compounds. Bioremediation techniques encompass natural attenuation, biostimulation, and bioaugmentation. While natural attenuation and biostimulation by indigenous microorganisms might work for certain applications, bioaugmentation using microbial populations with specialized capabilities for degrading the contaminants is often advantageous, and will be the focus of this chapter.

Bioaugmentation has been widely applied to assist bioremediation, but it has also frequently been associated with significant challenges and limited success, which is most likely due to lack of information leading to inappropriate application strategies.


Bioaugmentation Delivery limitations Immobilization of bioaugmentation strains Survival of bioaugmentation strains 


  1. 1.
    Singh A, Parmar N, Kuhad RC (eds) (2011) Bioaugmentation, biostimulation and biocontrol. Springer, Heidelberg/Dordrecht/London/New YorkGoogle Scholar
  2. 2.
    Dybas MJ, Hyndman DW, Heine R, Tiedje J, Linning K, Wiggert D, Voice T, Zhao X, Dybas L, Criddle CS (2002) Development, operation, and long-term performance of a full-scale biocurtain utilizing bioaugmentation. Environ Sci Technol 36:3635–3644CrossRefPubMedGoogle Scholar
  3. 3.
    Bouchez T, Patureau D, Dabert P, Juretschko S, Doré J, Delgenès P, Moletta R, Wagner M (2000) Ecological study of a bioaugmentation failure. Environ Microbiol 2(2):179–190CrossRefPubMedGoogle Scholar
  4. 4.
    Songzhe F, Hongxia F, Shuangjiang L, Ying L, Zhipei L (2009) A bioaugmentation failure caused by phage infection and weak biofilm formation ability. J Environ Sci 21(8):1153–1161CrossRefGoogle Scholar
  5. 5.
    Yu L, Peng D, Ren Y (2011) Protozoan predation on nitrification performance and microbial community during bioaugmentation. Bioresour Technol 102:10855–10860CrossRefPubMedGoogle Scholar
  6. 6.
    Watanabe K, Miyashita M, Harayama H (2000) Starvation improves survival of bacteria introduced into activated sludge. Appl Environ Microbiol 66(9):3905–3910CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Liu X, Chen Y, Zhang X, Jiang X, Wu S, Shen J, Sun X, Li J, Lu L, Wang L (2015) Aerobic granulation strategy for bioaugmentation of a sequencing batch reactor (SBR) treating high strength pyridine wastewater. J Hazard Mater 295:153–160CrossRefPubMedGoogle Scholar
  8. 8.
    Xu P, Ma W, Han H, Jia S, Hou B (2015) Isolation of naphthalene-degrading strain from activated sludge and bioaugmentation with it in a MBR treating coal gasification wastewater. Bull Environ Contam Toxicol 94(S1):358–364CrossRefPubMedGoogle Scholar
  9. 9.
    Tyagi M, da Fonseca MR, de Carvalho CCCR (2011) Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation 22:231–241CrossRefPubMedGoogle Scholar
  10. 10.
    Mrozik A, Piotrowska-Seget Z (2010) Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiol Res 165:363–375CrossRefPubMedGoogle Scholar
  11. 11.
    Gentry TJ, Rensing C, Pepper IL (2004) New approaches for bioaugmentation as a remediation technology. Crit Rev Environ Sci Technol 34:447–494CrossRefGoogle Scholar
  12. 12.
    Mehmannavaz R, Prasher SO, Ahmad D (2001) Cell surface properties of rhizobial strains isolated from soils contaminated with hydrocarbons: hydrophobicity and adhesion to sandy soil. Process Biochem 36:683–688CrossRefGoogle Scholar
  13. 13.
    van der Gast CJ, Whiteley AS, Thompson IP (2004) Temporal dynamics and degradation activity of an bacterial inoculum for treating waste metal-working fluid. Environ Microbiol 6:254–263CrossRefPubMedGoogle Scholar
  14. 14.
    Watanabe K, Teramoto M, Harayama S (2002) Stable bioaugmentation of activated sludge with foreign catabolic genes harboured by an indigenous dominant bacterium. Environ Microbiol 4:577–583CrossRefPubMedGoogle Scholar
  15. 15.
    Wenderoth DF, Rosenbrock P, Abraham WR, Pieper DH, Hofle MG (2003) Bacterial community dynamics during biostimulation and bioaugmentation experiments aiming at chlorobenzene degradation in groundwater. Microb Ecol 46:161–176CrossRefPubMedGoogle Scholar
  16. 16.
    Hajji KT, Lépine F, Bisaillon JG, Beaudet R, Hawari J, Guiot SR (2000) Effects of bioaugmentation strategies in UASB reactors with a methanogenic consortium for removal of phenolic compounds. Biotechnol Bioeng 67(4):417–423CrossRefPubMedGoogle Scholar
  17. 17.
    Ramakrishnan A, Gupta SK (2006) Anaerobic biogranulation in a hybrid reactor treating phenolic waste. J Hazard Mater 137(3):1488–1495CrossRefPubMedGoogle Scholar
  18. 18.
    Mendoza Y, Goodwin KD, Happell JD (2011) Microbial removal of atmospheric carbon tetrachloride in bulk aerobic soils. Appl Environ Microbiol 77(17):5835–5841CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kuiper I, Kravchenko LV, Bloemberg GV, Lugtenberg BJ (2002) Pseudomonas putida strain PCL1444, selected for efficient root colonization and naphthalene degradation, effectively utilizes root exudate components. Mol Plant Microbe Interact 15:734–4741CrossRefPubMedGoogle Scholar
  20. 20.
    Springael D, Top EM (2004) Horizontal gene transfer and microbial adaptation to xenobiotics: new types of mobile genetic elements and lessons from ecological studies. Trends Microbiol 12:53–58CrossRefPubMedGoogle Scholar
  21. 21.
    Thompson IP, van der Gast CJ, Ciric L, Singer AC (2005) Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol 7(7):909–915CrossRefPubMedGoogle Scholar
  22. 22.
    Zhou NA, Lutovsky AC, Andaker GL, Gough HL, Ferguson JF (2013) Cultivation and characterization of bacterial isolates capable of degrading pharmaceutical and personal care products for improved removal in activated sludge wastewater treatment. Biodegradation 24:813–827CrossRefPubMedGoogle Scholar
  23. 23.
    Cases I, de Lorenzo V (2005) Genetically modified organisms for the environment: stories of success and failure and what we have learned from them. Int Microbiol 8:213–222PubMedGoogle Scholar
  24. 24.
    Singer AC, van der Gast CJ, Thompson IP (2005) Perspectives and vision for strain selection in bioaugmentation. Trends Biotechnol 23(2):74–77CrossRefPubMedGoogle Scholar
  25. 25.
    Boon N, Goris J, de Vos P, Verstrate W, Top EM (2000) Bioaugmentation of activated sludge by an indigenous 3-chloroaniline-degrading Comamonas testosteroni strain, I2gfp. Appl Environ Microbiol 66(7):2906–2913CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Dueholm MS, Marques IG, Karst SM, D’Imperio S, Tale VP, Lewis D, Nielsen PH, Nielsen JL (2015) Survival and activity of individual bioaugmentation strains. Bioresour Technol 186:192–199CrossRefPubMedGoogle Scholar
  27. 27.
    Chen F, Tan M, Ma J, Zhang S, Li G, Qu J (2016) Efficient remediation of PAH-metal co-contaminated soil using microbial-plant combination: a greenhouse study. J Hazard Mater 302:250–261CrossRefPubMedGoogle Scholar
  28. 28.
    Longa C, Savazzini F, Tosi S, Elad Y, Pertot I (2009) Evaluating the survival and environmental fate of the biocontrol agent Trichoderma atroviride SC1 in vineyards in northern Italy. J Appl Microbiol 106:1549–1557CrossRefPubMedGoogle Scholar
  29. 29.
    Secher C, Lollier M, Jézéquel K, Cornu JY, Amalric L, Lebeau T (2013) Decontamination of a polychlorinated biphenyls-contaminated soil by phytoremediation-assisted bioaugmentation. Biodegradation 24:549–562CrossRefPubMedGoogle Scholar
  30. 30.
    Huang ZS, Qie Y, Wang ZD, Zhang YZ, Zhou WZ (2015) Application of deep-sea psychrotolerant bacteria in wastewater treatment by aerobic dynamic membrane bioreactors at low temperature. J Membr Sci 475:47–56CrossRefGoogle Scholar
  31. 31.
    Cui D, Li A, Qiu T, Cai R, Pang CL, Wang JH, Yang JX, Ma F, Ren NQ (2014) Improvement of nitrification efficiency by bioaugmentation in sequencing batch reactors at low temperature. Front Environ Sci Eng 8(6):937–944CrossRefGoogle Scholar
  32. 32.
    Zhou NA, Lutovsky AC, Andaker GL, Ferguson JF, Gough HL (2014) Kinetics modeling predicts bioaugmentation with Sphingomonad cultures as a viable technology for enhanced pharmaceutical and personal care products removal during wastewater treatment. Bioresour Technol 166:158–167CrossRefPubMedGoogle Scholar
  33. 33.
    Shao YY, Pei HY, Hu WR, Chanway CP, Meng PP, Ji Y, Li Z (2014) Bioaugmentation in lab scale constructed wetland microcosms for treating polluted river water and domestic wastewater in northern China. Int Biodeterior Biodegrad 95:151–159CrossRefGoogle Scholar
  34. 34.
    Zeng Y, Dabert P, Le Roux S, Mognol J, De Macedo FJ, De Guardia A (2014) Impact of the addition of a nitrifying activated sludge on ammonia oxidation during composting of residual household wastes. J Appl Microbiol 117(6):1674–1688CrossRefPubMedGoogle Scholar
  35. 35.
    Jurado MM, Suárez-Estrella F, Vargas-Garciá MC, López MJ, López-González JA, Moreno J (2014) Increasing native microbiota in lignocellulosic waste composting: effects on process efficiency and final product maturity. Process Biochem 49(11):1958–1969CrossRefGoogle Scholar
  36. 36.
    Yao Y, Lu Z, Zhu F, Min H, Bian C (2013) Successful bioaugmentation of an activated sludge reactor with Rhodococcus sp. YYL for efficient tetrahydrofuran degradation. J Hazard Mater 261:550–558CrossRefPubMedGoogle Scholar
  37. 37.
    Kim I-S, Ekpeghere K, Ha S-Y, Kim S-H, Kim B-S, Song B, Chun J, Chang J-S, Kim H-G, Koh S-C (2013) An eco-friendly treatment of tannery wastewater suing bioaugmentation with a novel microbial consortium. J Environ Sci Health A Tox Hazard Subst Environ Eng 48(13):1732–1739CrossRefPubMedGoogle Scholar
  38. 38.
    Wen D, Zhang J, Xiong R, Liu R, Chen L (2013) Bioaugmentation with a pyridine-degrading bacterium in a membrane bioreactor treating pharmaceutical wastewater. J Environ Sci (China) 25(11):2265–2271CrossRefGoogle Scholar
  39. 39.
    Zhang K, Zheng X, Shen D-S, Wang M-Z, Feng H-J, He H-Z, Wang S, Wang J-H (2015) Evidence for existence of quorum sensing in a bioaugmented system by acylated homoserine lactone-dependent quorum quenching. Environ Sci Pollut Res 22(8):6050–6056CrossRefGoogle Scholar
  40. 40.
    Wu S, Wallace S, Brix H, Kuschk P, Kirui WK, Masi F, Dong R (2015) Treatment of industrial effluents in constructed wetlands: challenges, operational strategies and overall performance. Environ Pollut 201:107–120CrossRefPubMedGoogle Scholar
  41. 41.
    Lee DG, Zhao F, Rezenom YH, Russell DH, Chu K-H (2012) Biodegradation of triclosan by a wastewater microorganism. Water Res 46(13):4226–4234CrossRefPubMedGoogle Scholar
  42. 42.
    Murdoch RW, Hay AG (2005) Formation of catechols via removal of acid side chains from ibuprofen and related aromatic acids. Appl Environ Microbiol 71:6121–6125CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Meade MJ, Waddell RL, Callahan TM (2001) Soil bacteria Pseudomonas putida and Alcaligenes xylosoxidans subsp denitrificans inactivate triclosan in liquid and solid substrates. FEMS Microbiol Lett 204:45–48CrossRefPubMedGoogle Scholar
  44. 44.
    Ike M, Jin C-S, Fujita M (1995) Isolation and characterization of a novel bisphenol A-degrading bacterium Pseudomonas paucimobilis strain FJ-4. Jpn J Water Treat Biol 31(3):203–212CrossRefGoogle Scholar
  45. 45.
    Fenchel T, Finlay BJ (1995) Ecology and evolution in anoxic worlds, Oxford series in ecology and evolution. Oxford University Press, New YorkGoogle Scholar
  46. 46.
    Gough HL, Nelsen D, Muller C, Ferguson J (2013) Enhanced methane generation during thermophilic co-digestion of confectionery waste and grease-trap fats and oils with municipal wastewater sludge. Water Environ Res 85(2):175–183CrossRefPubMedGoogle Scholar
  47. 47.
    Ziels RM, Beck DAC, Marti M, Gough HL, Stensel HD, Svensson BH (2015) Monitoring the dynamics of syntrophic β-oxidizing bacteria during anaerobic degradation of oleic acid by quantitative PCR. FEMS Microbiol Ecol 91(4):fiv028. doi: 10.1093/femsec/fiv028 CrossRefPubMedGoogle Scholar
  48. 48.
    Nkemka VN, Gilroyed B, Yanke J, Grunninger R, Vedres D, McAllister T, Hao X (2015) Bioaugmentation with an anaerobic fungus in a two-stage process for biohydrogen and biogas production using corn silage and cattail. Bioresour Technol 185:79–88CrossRefPubMedGoogle Scholar
  49. 49.
    Peng X, Börner RA, Nges IA, Liu J (2014) Impact of bioaugmentation on biochemical methane potential for wheat straw with addition of Clostridium cellulolyticum. Bioresour Technol 152:567–571CrossRefPubMedGoogle Scholar
  50. 50.
    Martin-Ryals A, Schideman L, Li P, Wilkinson H, Wagner R (2015) Improving anaerobic digestion of a cellulosic waste via routine bioaugmentation with cellulolytic microorganisms. Bioresour Technol 189:62–70CrossRefPubMedGoogle Scholar
  51. 51.
    Čater M, Fanedl L, Malovrh S, Logar RM (2015) Biogas production from brewery spent grain enhanced by bioaugmentation with hydrolytic anaerobic bacteria. Bioresour Technol 186:261–269CrossRefPubMedGoogle Scholar
  52. 52.
    Fotidis IA, Karakashev D, Angelidaki I (2013) Bioaugmentation with an acetate-oxidizing consortium as a tool to tackle ammonia inhibition of anaerobic digestion. Bioresour Technol 146:57–62CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of WashingtonSeattleUSA
  2. 2.Department of Chemistry and BioscienceAalborg UniversityAalborgDenmark

Personalised recommendations