Advertisement

Compositional Characterization of Acidic Petroleum Constituents Using Negative Ion Mode Electrospray Ionization Coupled with Fourier Transform-Ion Cyclotron Resonance Mass Spectrometry

  • Stefanie PoetzEmail author
  • Heinz Wilkes
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Direct infusion Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS) is an emerging tool in the characterization of complex mixtures of organic compounds such as petroleum fluids. Ultra-high mass resolution is achieved based on the extremely precise determination of cyclotron frequencies of ions forced on orbits in an ion trap by a high homogenous magnetic field. The achievable mass resolution depends on the strength of the magnetic field. In this protocol we present a method for compositional characterization of acidic petroleum constituents using negative ion mode electrospray ionization coupled with FT-ICR MS. The protocol describes sample preparation, measurement, and data evaluation and presents some examples for the visualization of the complex data sets obtained. We do so by comparing results for two crude oil samples from offshore Norway, one of which has experienced in-reservoir biodegradation while the other has not. Pitfalls of the used methodology and alternative ionization methods are briefly addressed.

Keywords:

Acidic petroleum constituents Biodegradation Compositional characterization Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry 

Notes

Acknowledgements

We would like to thank the Norwegian Petroleum Directorate for providing the crude oil samples analyzed in the study.

References

  1. 1.
    Wilkes H, Schwarzbauer J (2010) Hydrocarbons: an introduction to structure, physico-chemical properties and natural occurrence. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 1–48CrossRefGoogle Scholar
  2. 2.
    Brown L, Ulrich A (2015) Protocols for measurement of naphthenic acids in aqueous samples. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and lipid microbiology protocols. Springer protocols handbooks. doi: 10.1007/8623_2015_88
  3. 3.
    Wilkes H (2010) Methods of hydrocarbon analysis. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 49–65CrossRefGoogle Scholar
  4. 4.
    Taylor P, Bennett B, Jones M, Larter S (2001) The effect of biodegradation and water washing on the occurrence of alkylphenols in crude oils. Org Geochem 32:341–358CrossRefGoogle Scholar
  5. 5.
    Clegg H, Wilkes H, Horsfield B (1997) Carbazole distributions in carbonate and clastic source rocks. Geochim Cosmochim Acta 61:5335–5345CrossRefGoogle Scholar
  6. 6.
    Marshall AG, Rodgers RP (2004) Petroleomics: the next grand challenge for chemical analysis. Acc Chem Res 37:53–59Google Scholar
  7. 7.
    Hughey CA, Rodgers RP, Marshall AG (2002) Resolution of 11,000 compositionally distinct components in a single electrospray ionization Fourier transform ion cyclotron resonance mass spectrum of crude oil. Anal Chem 74:4145–4149CrossRefPubMedGoogle Scholar
  8. 8.
    Kim S, Stanford LA, Rodgers RP, Marshall AG, Walters CC, Qian K, Wenger LM, Mankiewicz P (2005) Microbial alteration of the acidic and neutral polar NSO compounds revealed by Fourier transform ion cyclotron resonance mass spectrometry. Org Geochem 36:1117–1134CrossRefGoogle Scholar
  9. 9.
    Bae E, Na J-G, Chung SH, Kim HS, Kim S (2010) Identification of about 30,000 chemical components in shale oils by electrospray ionization (ESI) and atmospheric pressure photoionization (APPI) coupled with 15 T Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and a comparison to conventional oil. Energy Fuels 24:2563–2569CrossRefGoogle Scholar
  10. 10.
    Klein CG, Angstrom A, Rodgers RP, Marshall AG (2006) Use of saturates/aromatics/resins/asphaltenes (SARA) fractionation to determine matrix effects in crude oil analysis by electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 20:668–672CrossRefGoogle Scholar
  11. 11.
    Pakarinen JMH, Teravainen MJ, Pirskanen A, Wickstrom K, Vainiotalo P (2007) A positive-ion electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry study of Russian and North Sea crude oils and their six distillation fractions. Energy Fuels 21:3369–3374Google Scholar
  12. 12.
    Purcell JM, Hendrickson CL, Rodgers RP, Marshall AG (2006) Atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry for complex mixture analysis. Anal Chem 78:5906–5912CrossRefPubMedGoogle Scholar
  13. 13.
    Cho Y, Na J-G, Nho N-S, Kim S, Kim S (2012) Application of saturates, aromatics, resins, and asphaltenes crude oil fractionation for detailed chemical characterization of heavy crude oils by Fourier transform ion cyclotron resonance mass spectrometry equipped with atmospheric pressure photoionization. Energy Fuels 26:2558–2565CrossRefGoogle Scholar
  14. 14.
    Cho Y, Witt M, Kim YH, Kim S (2012) Characterization of crude oils at the molecular level by use of laser desorption ionization Fourier-transform ion cyclotron resonance mass spectrometry. Anal Chem 84:8587–8594CrossRefPubMedGoogle Scholar
  15. 15.
    Smith DF, Rahimi P, Teclemariam A, Rodgers RP, Marshall AG (2008) Characterization of Athabasca bitumen heavy vacuum gas oil distillation cuts by negative/positive electrospray ionization and automated liquid injection field desorption ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 22:3118–3125CrossRefGoogle Scholar
  16. 16.
    Kim YH, Kim S (2010) Improved abundance sensitivity of molecular ions in positive-ion APCI MS analysis of petroleum in toluene. J Am Soc Mass Spectrom 21:386–392CrossRefPubMedGoogle Scholar
  17. 17.
    Corilo YE, Vaz BG, Simas RC, Lopes Nascimento HD, Klitzke CF, Pereira RCL, Bastos WL, Santos Neto EV, Rodgers RP, Eberlin MN (2010) Petroleomics by EASI(±) FT-ICR MS. Anal Chem 82:3990–3996CrossRefPubMedGoogle Scholar
  18. 18.
    Crawford KE, Campbell JL, Fiddler MN, Duan P, Qian K, Gorbaty ML, Kenttamaa HI (2005) Laser-induced acoustic desorption/Fourier transform ion cyclotron resonance mass spectrometry for petroleum distillate analysis. Anal Chem 77:7916–7923CrossRefPubMedGoogle Scholar
  19. 19.
    Panda SK, Brockmann KJ, Benter T, Schrader W (2011) Atmospheric pressure laser ionization (APLI) coupled with Fourier transform ion cyclotron resonance mass spectrometry applied to petroleum samples analysis: comparison with electrospray ionization and atmospheric pressure photoionization methods. Rapid Commun Mass Spectrom 25:2317–2326CrossRefPubMedGoogle Scholar
  20. 20.
    Fu JM, Kim S, Rodgers RP, Hendrickson CL, Marshall AG, Qian KN (2006) Nonpolar compositional analysis of vacuum gas oil distillation fractions by electron ionization Fourier transform ion cyclotron resonance mass spectrometry. Energy Fuels 20:661–667CrossRefGoogle Scholar
  21. 21.
    Hsu CS (2012) Mass resolving power requirement for molecular formula determination of fossil oils. Energy Fuels 26:1169–1177CrossRefGoogle Scholar
  22. 22.
    Marshall AG, Hendrickson CL (2008) High-resolution mass spectrometers. Ann Rev Anal Chem 1:579–599CrossRefGoogle Scholar
  23. 23.
    Zhurov KO, Kozhinov AN, Tsybin YO (2013) Evaluation of high-field Orbitrap Fourier transform mass spectrometer for petroleomics. Energy Fuels 27:2974–2983CrossRefGoogle Scholar
  24. 24.
    Shipkova PA, Heimark L, Bartner PL, Chen GD, Pramanik BN, Ganguly AK, Cody RB, Kusai A (2000) High-resolution LC/MS for analysis of minor components in complex mixtures: negative ion ESI for identification of impurities and degradation products of a novel oligosaccharide antibiotic. J Mass Spectrom 35:1252–1258CrossRefPubMedGoogle Scholar
  25. 25.
    Hakansson K, Chalmers MJ, Quinn JP, McFarland MA, Hendrickson CL, Marshall AG (2003) Combined electron capture and infrared multiphoton dissociation for multistage MS/MS in a Fourier transform ion cyclotron resonance mass spectrometer. Anal Chem 75:3256–3262CrossRefPubMedGoogle Scholar
  26. 26.
    Mikesh LM, Ueberheide B, Chi A, Coon JJ, Syka JEP, Shabanowitz J, Hunt DF (2006) The utility of ETD mass spectrometry in proteomic analysis. Biochim Biophys Acta 1764:1811–1822CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Witt M, Fuchser J, Koch BP (2009) Fragmentation studies of fulvic acids using collision induced dissociation Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 81:2688–2694CrossRefPubMedGoogle Scholar
  28. 28.
    Laskin J, Denisov EV, Shukla AK, Barlow SE, Futrell JH (2002) Surface-induced dissociation in a Fourier transform ion cyclotron resonance mass spectrometer: instrument design and evaluation. Anal Chem 74:3255–3261CrossRefPubMedGoogle Scholar
  29. 29.
    Kendrick E (1963) A mass scale based on CH2 = 14.0000 for high resolution mass spectrometry of organic compounds. Anal Chem 35:2146–2154Google Scholar
  30. 30.
    Hughey CA, Hendrickson CL, Rodgers RP, Marshall AG, Qian K (2001) Kendrick mass defect spectrum: a compact visual analysis for ultrahigh-resolution broadband mass spectra. Anal Chem 73:4676–4681CrossRefPubMedGoogle Scholar
  31. 31.
    Hsu CS, Qian K, Chen YC (1992) An innovative approach to data analysis in hydrocarbon characterization by on-line liquid chromatography-mass spectrometry. Anal Chim Acta 264:79–89CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Helmholtz Centre Potsdam (GFZ) German Research Centre for GeosciencesPotsdamGermany
  2. 2.Institute for Chemistry and Biology of the Marine Environment (ICBM)Carl von Ossietzky UniversityOldenburgGermany

Personalised recommendations