Skip to main content

Strategies to Map the Microbiome of Freshwater Lakes: Sampling and Context

  • Protocol
  • First Online:
  • 679 Accesses

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Freshwater lakes are indispensible resources for humankind and as such also exposed to significant pressure from anthropogenic activities and environmental change. Organic matter holds a central role in these ecosystems, both in providing energy for the food web and in modifying water quality. The transformation, degradation, and internal production of organic matter is largely mediated by microorganisms and there is hence great interest in learning more about the ecology and function of these microscopic but abundant key players in lake ecosystems. The focus of this chapter is thus on strategies to study the spatial and temporal organization of the freshwater lake microbiome, with special attention to representative and rational sampling of freshwater lakes for subsequent analyses of microbial process or community features. Within-system heterogeneity across spatial and temporal scales will be presented and linkages between the physical structure, chemical gradients, and microbial distribution patterns will be discussed. Useful practical considerations to sample water for experiments or cells for biomolecular analyses will be presented along with recommendations regarding how to collect and compile basic but critically important contextual information. It is evident that the long-standing myth of freshwater lakes as homogenous systems delimited by defined shoreline boundaries is incorrect and that heterogeneity should be considered already in designing sampling strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Lindeman RL (1941) Food cycle dynamics in a senescent lake. Am Midl Nat 26:636–673

    Article  Google Scholar 

  2. Williamson CE, Saros JE, Vincent WF, Smol JP (2009) Lakes and reservoirs as sentinels, integrators, and regulators of climate change. Limnol Oceanogr 54:2273–2282

    Article  Google Scholar 

  3. Newton RJ, Jones SE, Eiler A, McMahon KD, Bertilsson S (2011) A guide to the natural history of freshwater lake bacteria. Microbiol Mol Biol Rev 75:14–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kalff J (2002) Limnology: inland water ecosystems. Prentice Hall, New Jersey, p 592

    Google Scholar 

  5. Wetzel RG (2001) Limnology - lake and river ecosystems, 3rd edn. Elsevier Academic Press, San Diego

    Google Scholar 

  6. Madrid Y, Zayas ZP (2007) Water sampling: traditional methods and new approaches in water sampling strategy. Trends Anal Chem 26:293–299

    Article  CAS  Google Scholar 

  7. Prosser J (2010) Replicate or lie. Environ Microbiol 12:1806–1810

    Article  CAS  PubMed  Google Scholar 

  8. ISO 5667-4 (1987) Water quality - sampling - guidance on sampling from lakes, natural and manmade. International Organization for Standardization

    Google Scholar 

  9. Lindström ES, Forslund M, Algesten G, Bergström A-K (2006) External control of bacterial community structure in lakes. Limnol Oceanogr 51:339–342

    Article  Google Scholar 

  10. Cole JJ, Pace ML, Caraco NF, Steinhart GS (1993) Bacterial biomass and cell size distribution in lakes: more and larger cells in anoxic waters. Limnol Oceanogr 38:1627–1632

    Article  Google Scholar 

  11. Shade A, Jones SJ, McMahon KD (2008) The influence of habitat heterogeneity on freshwater bacterial community composition and dynamics. Environ Microbiol 10:1057–1067

    Article  CAS  PubMed  Google Scholar 

  12. Stevenson LH, Wyman B (1991) Hypoxia. In: Dictionary of environmental science. Facts on File, Inc., New York, p 125

    Google Scholar 

  13. Peura S, Eiler A, Bertilsson S, Nykänen H, Tiirola M, Jones RI (2012) Distinct and diverse anaerobic bacterial communities in boreal lakes dominated by candidate division OD1. ISME J 6:1640–1652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Evans D (1994) Empirical evidence of the importance of sediment resuspension in lakes. Hydrobiologia 284:5–12

    Article  Google Scholar 

  15. Simon M, Grossart HP, Schweitzer B, Ploug H (2002) Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Microb Ecol 28:175–2011

    Article  Google Scholar 

  16. von Wachenfeld E, Tranvik LJ (2008) Sedimentation in boreal lakes-the role of flocculation of allochthonous dissolved organic matter in the water column. Ecosystems 11:803–814

    Article  Google Scholar 

  17. Allgaier M, Grossart HP (2006) Seasonal dynamics and phylogenetic diversity of free-living and particle-associated bacterial communities in four lakes in northeastern Germany. Aquat Microb Ecol 45:115–128

    Article  Google Scholar 

  18. Carrias JF, Serre JP, Sime-Ngando T, Amblard C (2002) Distribution, size, and bacterial colonization of pico- and nano-detrital organic particles (DOP) in two lakes of different trophic status. Limnol Oceanogr 47:1202–1209

    Article  CAS  Google Scholar 

  19. Sprules WG (1983) Size distribution of pelagic particles in lakes. Can J Fish Aquat Sci 40:1761–1769

    Article  Google Scholar 

  20. Cunliffe M, Upstil-Goddard RC, Murrell JC (2011) Microbiology of aquatic surface microlayers. FEMS Microbiol Rev 35:233–246

    Article  CAS  PubMed  Google Scholar 

  21. Hervas A, Casamayor EO (2009) High similarity between bacterioneuston and airborne bacterial community composition in a high mountain lake area. FEMS Microbiol Ecol 67:219–228

    Article  CAS  PubMed  Google Scholar 

  22. Schilling K, Zessner M (2011) Foam in the aquatic environment. Water Res 45:4355–4366

    Article  CAS  PubMed  Google Scholar 

  23. Salonen K, Leppäranta M, Viljanen M, Gulati RD (2009) Perspectives in winter limnology: closing the annual cycle of freezing lakes. Aquat Ecol 43:609–616

    Article  Google Scholar 

  24. Bertilsson S, Burgin A, Carey CC, Fey SB, Grossart HP, Grubisic LM, Jones ID, Kirillin G, Lennon JT, Shade A, Smith RL (2013) The under-ice microbiome of seasonally frozen lakes. Limnol Oceanogr 58:1998–2012

    Article  Google Scholar 

  25. Eiler A, Heinrich F, Bertilsson S (2012) Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J 6:330–342

    Article  CAS  PubMed  Google Scholar 

  26. Shade AL, Kent AD, Jones SE, Newton RJ, Triplett EW, McMahon KD (2007) Inter-annual dynamics and phenology of bacterial communities in a eutrophic lake. Limnol Oceanogr 52:487–494

    Article  CAS  Google Scholar 

  27. Aitkenhead-Peterson JA, McDowell WH, Neff JC (2003) Production and regulation of allochthonous dissolved organic matter inputs to surface waters. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Academic, New York, pp 26–70

    Google Scholar 

  28. Bertilsson S, Jones JB Jr (2003) Supply of dissolved organic matter to aquatic ecosystems: autochthonous sources. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems: interactivity of dissolved organic matter. Academic, New York, pp 3–24

    Chapter  Google Scholar 

  29. Schwarzenbach RP, Gschwend PM, Imboden DM (2003) Environmental organic geochemistry. Wiley, Hoboken

    Google Scholar 

  30. Schmidt TC, Haderlein SB, Pfister R, Forster R (2004) Occurrence and fate modeling of MTBE and BTEX compounds in a Swiss lake used as drinking water supply. Water Res 38:1520–1529

    Article  CAS  PubMed  Google Scholar 

  31. Cornelissen G, Gusafsson Ö, Bucheli TD, JOnker MTO, Koelmans AA, van Noort PCM (2005) Extensive sorption of organic compounds to black carbon, coal and kerogen in sediments and soils: mechanisms and consequences for distribution, bioaccumulation and biodegradation. Environ Sci Technol 39:6881–6895

    Article  CAS  PubMed  Google Scholar 

  32. Phelps CD, Young LY (1999) Anaerobic biodegradation of BTEX and gasoline in various aquatic sediments. Biodegradation 10:15–25

    Article  CAS  PubMed  Google Scholar 

  33. Kannan K, Johnson-Restrepo B, Yohn SS, Giesy JP, Long DT (2005) Spatial and temporal distribution of polycyclic aromatic hydrocarbons in sediments from Michigan inland lakes. Environ Sci Technol 39:4700–4706

    Article  CAS  PubMed  Google Scholar 

  34. Jones SE, Chiu CY, Kratz TK, Wu JT, Shade A, McMahon KD (2008) Typhoons initiate predictable change in aquatic bacterial communities. Limnol Oceanogr 53:1319–1326

    Article  Google Scholar 

  35. Shade A, Read JS, Welkie DG, Kratz TK, Wu CH, McMahon KD (2011) Resistance, resilience and recovery: aquatic bacterial dynamics after water column disturbance. Environ Microbiol 13:2752–2767

    Article  CAS  PubMed  Google Scholar 

  36. Bertilsson S (2008) The environmental context for metagenomic data. In: Moran MA, Amann R (eds) EC-US Workshop report on Cyberinfrastructure resources for genome-enabled research on microbial life and the marine environment. Arlington, VA, USA, Sept 2007

    Google Scholar 

  37. Shade A, Carey C, Kara E, Bertilsson S, McMahon KD, Smith M (2009) Can the black box be cracked? The augmentation of microbial ecology by high-resolution, automated sensing technologies. ISME J 3:881–888

    Article  PubMed  Google Scholar 

  38. Kara EL, Hanson P, Hamilton D et al (2012) Time-scale dependence in numerical simulations: assessment of physical, chemical and biological predictions in a stratified lake at temporal scales of hours to months. Environ Model Software 35:104–121

    Article  Google Scholar 

  39. Schindler DW (1969) Two useful devices for vertical plankton and water sampling. J Fish Res Board Can 26:1948–1955

    Article  Google Scholar 

  40. Blakar IA (1979) A close interval water sampler with minimal disturbance properties. Limnol Oceanogr 24:983–988

    Article  Google Scholar 

  41. Tranvik LJ, Tranvik PH (1993) A simple water sampler, and a chamber for in situ incubation of plankton samples at discrete depths. Freshw Biol 30:235–238

    Article  Google Scholar 

  42. Field D, Garrity G, Gray T et al (2008) The minimum information about a genome sequence (MIGS) specification. Nat Biotechnol 26:541–547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Palmer FE, Methot RD Jr, Staley JT (1978) Patchiness in the distribution of planktonic heterotrophic bacteria in lakes. Appl Environ Microbiol 31:1003–1005

    Google Scholar 

  44. Mudroch A, McKnight SD (eds) (1994) Handbook of techniques for aquatic sediments, 2nd edn. CRC Press/Lewis Publishers, Boca Raton

    Google Scholar 

  45. Agogué H, Casamayor EO, Joux F et al (2004) Comparison of samplers for the biological characterization of the sea surface microlayer. Limnol Oceanogr Meth 2:213–225

    Article  Google Scholar 

Download references

Acknowledgements

I thank Andrea Garcia-Bravo for valuable comments on an early draft of the manuscript. I owe countless colleagues gratitude for training and inspiration in limnological field work, but I particularly want to mention the late Peter Blomqvist, Anders Broberg, Wilhelm Granéli, Jan Johansson, Lars Tranvik, Lena Lundman, Trina McMahon, and her UW-Madison team for great ideas on how to sample lakes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Bertilsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Bertilsson, S. (2016). Strategies to Map the Microbiome of Freshwater Lakes: Sampling and Context. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2016_202

Download citation

  • DOI: https://doi.org/10.1007/8623_2016_202

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-53116-7

  • Online ISBN: 978-3-662-53118-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics