Skip to main content

Enrichment and Isolation of Metal Respiring Hydrocarbon Oxidizers

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

The energy conservation strategies of plants and animals are exceedingly homogeneous in comparison with those of bacterial cells. Among the wide variety of mechanisms that exist to provide energy and electrons to support bacterial life, the use of insoluble metallic elements as electron acceptors is one of the most interesting. The prevalence of metallic elements in the minerals that comprise soils and sediments raises the possibility that metal respiring organisms play a significant role in a variety of biogeochemical transformations. The environmental abundance of metals also inspires the hope that cells capable of coupling metal respiration to the oxidation of contaminant hydrocarbons can be captured, studied, and manipulated to enhance biodegradation processes. Indirect mechanisms of iron cycling may also play a role in hydrocarbon degradation. Biogenic Fe(II) bearing minerals such as magnetite, as well as reactive Fe(II) sorption on crystalline iron oxides, have also been shown to dechlorinate carbon tetrachloride and reduce nitroaromatic compounds. This protocol provides an overview of anaerobic culturing and specific techniques for the enrichment and isolation of metal respiring hydrocarbon oxidizers from environments of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu A, Garcia-Dominguez E, Rhine ED, Young LJ (2004) A novel arsenate respiring isolate that can utilize aromatic substrates. FEMS Microbiol Ecol 48(3):323–332

    Article  CAS  PubMed  Google Scholar 

  2. Villatoro-Monzón WR, Morales-Ibarria MG, Velázquez EK, Ramírez-Saad H, Razo-Flores E (2008) Benzene biodegradation under anaerobic conditions coupled with metal oxides reduction. Water Air Soil Pollut 192(1–4):165–172

    Article  Google Scholar 

  3. Holmes DE, Risso C, Smith JA, Lovley DR (2011) Anaerobic oxidation of benzene by the hyperthermophilic archaeon Ferroglobus placidus. Appl Environ Microbiol 77(17):5926–5933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lovley D, Lonergan DJ (1990) Anaerobic oxidation of toluene, phenol, and para-cresol by the dissimilatory iron-reducing organism, GS-15. Appl Environ Microbiol 56:1858–1864

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Coates JD, Bhupathiraju VK, Achenbach LA, McInerney MJ, Lovley DR (2001) Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers. Int J Syst Evol Microbiol 51:581–588

    Article  CAS  PubMed  Google Scholar 

  6. Kunapuli U, Jahn MK, Lueders T, Geyer R, Heipieper HJ, Meckenstock RU (2010) Desulfitobacterium aromaticivorans sp. nov. and Geobacter toluenoxydans sp. nov., iron-reducing bacteria capable of anaerobic degradation of monoaromatic hydrocarbons. Int J Syst Evol Microbiol 60(3):686–695

    Article  CAS  PubMed  Google Scholar 

  7. Zhang T, Bain TS, Nevin KP, Bartlett MA, Lovley DR (2012) Anaerobic benzene oxidation by Geobacter species. Appl Environ Microbiol 78(23):8304–8310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhou S, Yang G, Lu Q, Wu M (2014) Geobacter soli sp. nov., a dissimilatory Fe(III)-reducing bacterium isolated from forest soil. Int J Syst Evol Microbiol 64(Pt 11):3786–3791

    Article  PubMed  Google Scholar 

  9. Weelink SB, van Doesburg W, Saia FT, Rijpstra WIC, Roling WMF, Smidt H, Stams AJM (2009) A strictly anaerobic betaproteobacterium Georgfuchsia toluolica gen. nov., sp. nov. degrades aromatic compounds with Fe(III), Mn(IV) or nitrate as an electron acceptor. FEMS Microbiol Ecol 70(3):575–585

    Article  CAS  PubMed  Google Scholar 

  10. Kunapuli U, Lueders T, Meckenstock RU (2007) The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation. ISME J 1(7):643–653

    Article  CAS  PubMed  Google Scholar 

  11. Kleemann R, Meckenstock RU (2011) Anaerobic naphthalene degradation by Gram-positive, iron-reducing bacteria. FEMS Microbiol Ecol 78(3):488–496

    Article  CAS  PubMed  Google Scholar 

  12. Pilloni G, von Netzer F, Engel M, Lueders T (2011) Electron acceptor-dependent identification of key anaerobic toluene degraders at a tar-oil-contaminated aquifer by Pyro-SIP. FEMS Microbiol Ecol 78(1):165–175

    Article  CAS  PubMed  Google Scholar 

  13. Brileya K, Reysenbach AL (2014) The class Archaeoglobi. In: Rosenberg E et al (eds) The prokaryotes – other major lineages of bacteria and the archae. Springer, Berlin/Heidelberg, pp 545–577

    Google Scholar 

  14. Hafenbradl D, Keller M, Dirmeier R, Reinhard R, Roßnagel P, Burggraf S, Huber H, Stetter KO (1996) Ferroglobus placidus gen. nov., sp. nov., a novel hyperthermophilic archaeum that oxidizes Fe2+ at neutral pH under anoxic conditions. Arch Microbiol 166(5):308–314

    Article  CAS  PubMed  Google Scholar 

  15. Kashefi K, Tor JM, Holmes DE, Gaw van Praagh CV, Reysenbach AL, Lovley DR (2002) Geoglobus ahangari gen. nov., sp. nov., a novel hyperthermophilic archaeon capable of oxidizing organic acids and growing autotrophically on hydrogen with Fe(III) serving as the sole electron acceptor. Int J Syst Evol Microbiol 52(3):719–728

    CAS  PubMed  Google Scholar 

  16. Slobodkina GB, Kolganova TV, Querellou J, Bonch-Osmolovskaya EA, Slobodkin AI (2009) Geoglobus acetivorans sp. nov., an iron(III)-reducing archaeon from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 59(11):2880–2883

    Article  CAS  PubMed  Google Scholar 

  17. Mardanov AV, Mardanov AJ, Slododkina GB, Slobodkin AI, Beletsky AV, Gavrilov SN, Kublanov IV, Bonch-Osmolovskaya EA, Skryabin KG, Ravin NV (2015) The Geoglobus acetivorans genome: Fe(III) reduction, acetate utilization, autotrophic growth, and degradation of aromatic compounds in a hyperthermophilic archaeon. Appl Environ Microbiol 81(3):1003–1012

    Article  PubMed  PubMed Central  Google Scholar 

  18. Davidova I, Suflita J (2005) Enrichment and isolation of anaerobic hydrocarbon‚ degrading bacteria. Methods Enzymol 397:17–34

    Article  CAS  PubMed  Google Scholar 

  19. Balch WE, Fox GE, Magrum LJ, Woese CR, Wolfe RS (1979) Methanogens – reevaluation of a unique biological group. Microbiol Rev 43:260–296

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Hungate RE (1969) A roll-tube method for cultivation of strict anaerobes. J Microbiol Methods 3B:117–132

    Article  CAS  Google Scholar 

  21. Brezak J, Costilow R (1994) Physicochemical factors in growth. In: Gerhardt P (ed. in chief), Murray RGE, Wood WA, Krieg NR (eds) Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC

    Google Scholar 

  22. Widdel F (2016) Cultivation of anaerobic microorganisms with hydrocarbons as growth substrates. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and lipid microbiology protocols. Springer protocols handbooks. doi: 10.1007/8623_2015_186

    Google Scholar 

  23. Rabus R, Nordhaus R, Ludwig W, Widdel F (1993) Complete oxidation of toluene under strictly anoxic conditions by a new sulfate-reducing bacterium. Appl Environ Microbiol 59:1444–1451

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Fries MR, Zhou JH, Cheesanford J, Tiedje JM (1994) Isolation, characterization, and distribution of denitrifying toluene degraders from a variety of habitats. Appl Environ Microbiol 60:2802–2810

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Coates JD, Chakraborty R, Lack JG, O’Connor SM, Cole KA, Bender KS, Achenbach LA (2001) Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411:1039–1043

    Article  CAS  PubMed  Google Scholar 

  26. Lovley DR, Woodward JC, Chapelle FH (1994) Stimulated anoxic biodegradation of aromatic-hydrocarbons using Fe(III) ligands. Nature 370:128–131

    Article  CAS  PubMed  Google Scholar 

  27. Lovley DR, Woodward JC (1996) Rapid anaerobic benzene oxidation with a variety of chelated Fe (III) forms. Rapid anaerobic benzene oxidation with a variety of chelated Fe (III) forms. Appl Environ Microbiol 62(1):288–291

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Lovley DR, Woodward JC, Chapelle FH (1994) Nature stimulation of hydrocarbon degradation by Fe(III) chelation.pdf. Nature 370:128–131

    Article  CAS  PubMed  Google Scholar 

  29. Lovley D, Woodward J, Chapelle F (1996) Rapid anaerobic benzene oxidation with a variety of chelated Fe(III) forms. Appl Environ Microbiol 62(1):288–291

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Cutting RS, Coker VS, Fellowes JW, Lloyd JR, Vaughan DJ (2009) Mineralogical and morphological constraints on the reduction of Fe(III) minerals by Geobacter sulfurreducens. Geochim Cosmochim Acta 73(14):4004–4022

    Article  CAS  Google Scholar 

  31. Lentini CJ, Wankel SD, Hansel CM (2012) Enriched iron(III)-reducing bacterial communities are shaped by carbon substrate and iron oxide mineralogy. Front Microbiol 3:1–19

    Article  Google Scholar 

  32. Anderson RT, Rooney-Varga JN, Gaw CV, Lovley DR (1998) Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum contaminated aquifers. Environ Sci Technol 32:1222–1229

    Article  CAS  Google Scholar 

  33. Coates JD, Ellis DJ, Gaw CV, Lovley D (1999) Geothrix fermentans gen. nov., sp nov., a novel Fe(III)-reducing bacterium from a hydrocarbon-contaminated aquifer. Int J Syst Bacteriol 49:1615–1622

    Article  CAS  PubMed  Google Scholar 

  34. Cupples AM (2011) The use of nucleic acid based stable isotope probing to identify the microorganisms responsible for anaerobic benzene and toluene biodegradation. J Microbiol Methods 85(2):83–91

    Article  CAS  PubMed  Google Scholar 

  35. Lueders T (2015) DNA- and RNA-based stable isotope probing of hydrocarbon degraders. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and lipid microbiology protocols. Springer, Heidelberg doi: 10.1007/8623_2015_74

    Google Scholar 

  36. Smith JA, Aklujkar M, Risso M, Leang C, Giloteaux L, Holmes DE (2015) Insight into mechanisms involved in Fe(III) respiration by the hyperthermophilic archaeon, Ferroglobus placidus. Appl Environ Microbiol 81(8):AEM.04038–14

    Google Scholar 

  37. Goto K, Taguchi S, Fukue Y, Ohta K (1977) Spectrophotometric determination of manganese with 1-(2-pyridylazo)-2-naphthol and a non-ionic surfactant. Talanta 24(12):752–753

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Coates .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Williamson, A.J., Coates, J.D. (2016). Enrichment and Isolation of Metal Respiring Hydrocarbon Oxidizers. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2016_198

Download citation

  • DOI: https://doi.org/10.1007/8623_2016_198

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45178-6

  • Online ISBN: 978-3-662-45179-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics