Skip to main content

Current Landscape of Biomolecular Approaches for Assessing Biodegradation of Aromatic Hydrocarbons

  • Protocol
  • First Online:
  • 816 Accesses

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

The ability of bacteria to degrade hazardous pollutants is a valuable tool that can be employed for cleaning contaminated sites. As a result of the complex mixtures of organic compounds present in contaminated areas, the combined genetic information of more than one organism is necessary to enhance the degradation process. Aromatic compounds are believed to constitute approximately 25% of all biomass on earth. Community profiling and other molecular techniques, such as quantitative real-time PCR and fluorescence in situ hybridization, provide the phylogenetic context of the potential key genes associated with the degradation of aromatic compounds. The application of molecular techniques may help to identify potentially remediating organisms and to discover particular degradation abilities. Increased knowledge on the microbial diversity in environments contaminated with aromatic compounds may assist in the characterization of highly efficient and tolerant bacteria when exposed to a broad range of stresses. Ultimately, such knowledge may support the development of novel and effective bioremediation strategies.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. de Menezes A, Clipson N, Doyle E (2012) Comparative metatranscriptomics reveals widespread community responses during phenanthrene degradation in soil. Environ Microbiol 14:2577–2588

    Article  PubMed  Google Scholar 

  2. Seo JS, Keum YS, Li QX (2009) Bacterial degradation of aromatic compounds. Int J Environ Res Public Health 6:278–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pérez-Pantoja D, González B, Pieper DH (2010) Aerobic degradation of aromatic hydrocarbons. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 799–837

    Chapter  Google Scholar 

  4. Gibson J, Harwood SC (2002) Metabolic diversity in aromatic compound utilization by anaerobic microbes. Annu Rev Microbiol 56:345–369

    Article  CAS  PubMed  Google Scholar 

  5. Pieper DH, González B, Cámara B, Pérez-Pantoja D, Reineke W (2010) Aerobic degradation of chloroaromatics. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 839–864

    Chapter  Google Scholar 

  6. Duarte M, Jauregui R, Vilchez-Vargas R, Junca H, Pieper DH (2014) AromaDeg, a novel database for phylogenomics of aerobic bacterial degradation of aromatics. Database (Oxford) 2014, bau118

    Article  Google Scholar 

  7. Vaillancourt FH, Bolin JT, Eltis LD (2006) The ins and outs of ring-cleaving dioxygenases. Crit Rev Biochem Mol Biol 41:241–267

    Article  CAS  PubMed  Google Scholar 

  8. Altenschmidt U, Fuchs G (1992) Novel aerobic 2-aminobenzoate metabolism. Purification and characterization of 2-aminobenzoate-CoA ligase, localisation of the gene on a 8-kbp plasmid, and cloning and sequencing of the gene from a denitrifying Pseudomonas sp. Eur J Biochem 205:721–727

    Article  CAS  PubMed  Google Scholar 

  9. Bains J, Boulanger MJ (2007) Biochemical and structural characterization of the paralogous benzoate CoA ligases from Burkholderia xenovorans LB400: defining the entry point into the novel benzoate oxidation (box) pathway. J Mol Biol 373:965–977

    Article  CAS  PubMed  Google Scholar 

  10. Buder R, Fuchs G (1989) 2-Aminobenzoyl-CoA monooxygenase/reductase, a novel type of flavoenzyme. Purification and some properties of the enzyme. Eur J Biochem 185:629–635

    Article  CAS  PubMed  Google Scholar 

  11. El-Said Mohamed M (2000) Biochemical and molecular characterization of phenylacetate-coenzyme A ligase, an enzyme catalyzing the first step in aerobic metabolism of phenylacetic acid in Azoarcus evansii. J Bacteriol 182:286–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ferrandez A, Minambres B, Garcia B, Olivera ER, Luengo JM, Garcia JL, Diaz E (1998) Catabolism of phenylacetic acid in Escherichia coli. Characterization of a new aerobic hybrid pathway. J Biol Chem 273:25974–25986

    Article  CAS  PubMed  Google Scholar 

  13. Ismail W, El-Said Mohamed M, Wanner BL, Datsenko KA, Eisenreich W, Rohdich F et al (2003) Functional genomics by NMR spectroscopy. Phenylacetate catabolism in Escherichia coli. Eur J Biochem 270:3047–3054

    Article  CAS  PubMed  Google Scholar 

  14. Schuhle K, Jahn M, Ghisla S, Fuchs G (2001) Two similar gene clusters coding for enzymes of a new type of aerobic 2-aminobenzoate (anthranilate) metabolism in the bacterium Azoarcus evansii. J Bacteriol 183:5268–5278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zaar A, Gescher J, Eisenreich W, Bacher A, Fuchs G (2004) New enzymes involved in aerobic benzoate metabolism in Azoarcus evansii. Mol Microbiol 54:223–238

    Article  CAS  PubMed  Google Scholar 

  16. Pérez-Pantoja D, Donoso R, Junca H, González B, Pieper DH (2010) Phylogenomics of aerobic bacterial degradation of aromatics. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 1355–1397

    Chapter  Google Scholar 

  17. Fuchs G, Boll M, Heider J (2011) Microbial degradation of aromatic compounds - from one strategy to four. Nat Rev Microbiol 9:803–816

    Article  CAS  PubMed  Google Scholar 

  18. Boll M, Loffler C, Morris BE, Kung JW (2014) Anaerobic degradation of homocyclic aromatic compounds via arylcarboxyl-coenzyme A esters: organisms, strategies and key enzymes. Environ Microbiol 16:612–627

    Article  CAS  PubMed  Google Scholar 

  19. deNardi IR, Zaiat M, Foresti E (2007) Kinetics of BTEX degradation in a packed-bed anaerobic reactor. Biodegradation 18:83–90

    Article  PubMed  Google Scholar 

  20. Wilson BH, Smith GB, Rees JF (1986) Biotransformations of selected alkylbenzenes and halogenated aliphatic hydrocarbons in methanogenic aquifer material: a microcosm study. Environ Sci Technol 20:997–1002

    Article  CAS  PubMed  Google Scholar 

  21. Kummel S, Herbst FA, Bahr A, Duarte M, Pieper DH, Jehmlich N et al (2015) Anaerobic naphthalene degradation by sulfate-reducing Desulfobacteraceae from various anoxic aquifers. FEMS Microbiol Ecol 91

    Google Scholar 

  22. Eberlein C, Estelmann S, Seifert J, von Bergen M, Muller M, Meckenstock RU, Boll M (2013) Identification and characterization of 2-naphthoyl-coenzyme A reductase, the prototype of a novel class of dearomatizing reductases. Mol Microbiol 88:1032–1039

    Article  CAS  PubMed  Google Scholar 

  23. Estelmann S, Blank I, Feldmann A, Boll M (2015) Two distinct old yellow enzymes are involved in naphthyl ring reduction during anaerobic naphthalene degradation. Mol Microbiol 95:162–172

    Article  CAS  PubMed  Google Scholar 

  24. Lueders T, von Netzer F (2014) Primers: functional genes for anaerobic hydrocarbon degrading microbes. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and lipid microbiology protocols, Springer Protocols Handbooks. Humana Press, New York. doi:10.1007/8623_2014_64

    Google Scholar 

  25. McKew BA, Smith CJ (2015) Real-time PCR approaches for analysis of hydrocarbon-degrading bacterial communities. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and lipid microbiology protocols, Springer protocols handbooks. Springer, Heidelberg. doi:10.1007/8623_2015_64

    Google Scholar 

  26. Powell SM, Ferguson SH, Bowman JP, Snape I (2006) Using real-time PCR to assess changes in the hydrocarbon-degrading microbial community in Antarctic soil during bioremediation. Microb Ecol 52:523–532

    Article  CAS  PubMed  Google Scholar 

  27. Ritalahti KM, Amos BK, Sung Y, Wu Q, Koenigsberg SS, Loffler FE (2006) Quantitative PCR targeting 16S rRNA and reductive dehalogenase genes simultaneously monitors multiple Dehalococcoides strains. Appl Environ Microbiol 72:2765–2774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Akondi KB, Lakshmi VV (2013) Emerging trends in genomic approaches for microbial bioprospecting. Omics 17:61–70

    Article  CAS  PubMed  Google Scholar 

  29. Lloyd KG, Macgregor BJ, Teske A (2010) Quantitative PCR methods for RNA and DNA in marine sediments: maximizing yield while overcoming inhibition. FEMS Microbiol Ecol 72:143–151

    Article  CAS  PubMed  Google Scholar 

  30. Baldwin BR, Biernacki A, Blair J, Purchase MP, Baker JM, Sublette K et al (2010) Monitoring gene expression to evaluate oxygen infusion at a gasoline-contaminated site. Environ Sci Technol 44:6829–6834

    Article  CAS  PubMed  Google Scholar 

  31. Dionisi HM, Lozada M, Olivera NL (2012) Bioprospection of marine microorganisms: biotechnological applications and methods. Rev Argent Microbiol 44:49–60

    CAS  PubMed  Google Scholar 

  32. Gilbride KA, Lee DY, Beaudette LA (2006) Molecular techniques in wastewater: understanding microbial communities, detecting pathogens, and real-time process control. J Microbiol Methods 66:1–20

    Article  CAS  PubMed  Google Scholar 

  33. Harms G, Layton AC, Dionisi HM, Gregory IR, Garrett VM, Hawkins SA et al (2003) Real-time PCR quantification of nitrifying bacteria in a municipal wastewater treatment plant. Environ Sci Technol 37:343–351

    Article  CAS  PubMed  Google Scholar 

  34. Cebron A, Norini MP, Beguiristain T, Leyval C (2008) Real-Time PCR quantification of PAH-ring hydroxylating dioxygenase (PAH-RHDalpha) genes from Gram positive and Gram negative bacteria in soil and sediment samples. J Microbiol Methods 73:148–159

    Article  CAS  PubMed  Google Scholar 

  35. Ni Chadhain SM, Norman RS, Pesce KV, Kukor JJ, Zylstra GJ (2006) Microbial dioxygenase gene population shifts during polycyclic aromatic hydrocarbon biodegradation. Appl Environ Microbiol 72:4078–4087

    Article  PubMed  PubMed Central  Google Scholar 

  36. Khan AA, Wang RF, Cao WW, Doerge DR, Wennerstrom D, Cerniglia CE (2001) Molecular cloning, nucleotide sequence, and expression of genes encoding a polycyclic aromatic ring dioxygenase from Mycobacterium sp. strain PYR-1. Appl Environ Microbiol 67:3577–3585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Junca H, Pieper DH (2010) Functional marker gene assays for hydrocarbon degrading microbial communities: aerobic. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 4289–4312

    Chapter  Google Scholar 

  38. Green SJ, Leigh MB, Neufeld JD (2010) Denaturing gradient gel electrophoresis (DGGE) for microbial community analysis. In: Timmis K (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin/Heidelberg, pp 4137–4158

    Chapter  Google Scholar 

  39. Andrade LL, Leite DC, Ferreira EM, Ferreira LQ, Paula GR, Maguire MJ et al (2012) Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment. BMC Microbiol 12:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kunapuli U, Lueders T, Meckenstock RU (2007) The use of stable isotope probing to identify key iron-reducing microorganisms involved in anaerobic benzene degradation. ISME J 1:643–653

    Article  CAS  PubMed  Google Scholar 

  41. Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649

    Article  CAS  PubMed  Google Scholar 

  42. Manefield M, Whiteley AS, Griffiths RI, Bailey MJ (2002) RNA stable isotope probing, a novel means of linking microbial community function to phylogeny. Appl Environ Microbiol 68:5367–5373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Jeon CO, Park W, Padmanabhan P, DeRito C, Snape JR, Madsen EL (2003) Discovery of a bacterium, with distinctive dioxygenase, that is responsible for in situ biodegradation in contaminated sediment. Proc Natl Acad Sci U S A 100:13591–13596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mahmood S, Paton GI, Prosser JI (2005) Cultivation-independent in situ molecular analysis of bacteria involved in degradation of pentachlorophenol in soil. Environ Microbiol 7:1349–1360

    Article  CAS  PubMed  Google Scholar 

  45. Padmanabhan P, Padmanabhan S, DeRito C, Gray A, Gannon D, Snape JR et al (2003) Respiration of 13C-labeled substrates added to soil in the field and subsequent 16S rRNA gene analysis of 13C-labeled soil DNA. Appl Environ Microbiol 69:1614–1622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yu CP, Chu KH (2005) A quantitative assay for linking microbial community function and structure of a naphthalene-degrading microbial consortium. Environ Sci Technol 39:9611–9619

    Article  CAS  PubMed  Google Scholar 

  47. Lin JL, Radajewski S, Eshinimaev BT, Trotsenko YA, McDonald IR, Murrell JC (2004) Molecular diversity of methanotrophs in Transbaikal soda lake sediments and identification of potentially active populations by stable isotope probing. Environ Microbiol 6:1049–1060

    Article  CAS  PubMed  Google Scholar 

  48. Manefield M, Griffiths RI, Leigh MB, Fisher R, Whiteley AS (2005) Functional and compositional comparison of two activated sludge communities remediating coking effluent. Environ Microbiol 7:715–722

    Article  CAS  PubMed  Google Scholar 

  49. Singleton DR, Sangaiah R, Gold A, Ball LM, Aitken MD (2006) Identification and quantification of uncultivated Proteobacteria associated with pyrene degradation in a bioreactor treating PAH-contaminated soil. Environ Microbiol 8:1736–1745

    Article  CAS  PubMed  Google Scholar 

  50. Lear G, Song B, Gault AG, Polya DA, Lloyd JR (2007) Molecular analysis of arsenate-reducing bacteria within Cambodian sediments following amendment with acetate. Appl Environ Microbiol 73:1041–1048

    Article  CAS  PubMed  Google Scholar 

  51. Pilloni G, von Netzer F, Engel M, Lueders T (2011) Electron acceptor-dependent identification of key anaerobic toluene degraders at a tar-oil-contaminated aquifer by Pyro-SIP. FEMS Microbiol Ecol 78:165–175

    Article  CAS  PubMed  Google Scholar 

  52. Gutierrez T, Singleton DR, Berry D, Yang T, Aitken MD, Teske A (2013) Hydrocarbon-degrading bacteria enriched by the Deepwater Horizon oil spill identified by cultivation and DNA-SIP. ISME J 7:2091–2104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Malik S, Beer M, Megharaj M, Naidu R (2008) The use of molecular techniques to characterize the microbial communities in contaminated soil and water. Environ Int 34:265–276

    Article  CAS  PubMed  Google Scholar 

  54. Tischer K, Zeder M, Klug R, Pernthaler J, Schattenhofer M, Harms H, Wendeberg A (2012) Fluorescence in situ hybridization (CARD-FISH) of microorganisms in hydrocarbon contaminated aquifer sediment samples. Syst Appl Microbiol 35:526–532

    Article  CAS  PubMed  Google Scholar 

  55. Vilchez-Vargas R, Geffers R, Suarez-Diez M, Conte I, Waliczek A, Kaser VS et al (2013) Analysis of the microbial gene landscape and transcriptome for aromatic pollutants and alkane degradation using a novel internally calibrated microarray system. Environ Microbiol 15:1016–1039

    Article  CAS  PubMed  Google Scholar 

  56. Acosta-Gonzalez A, Rossello-Mora R, Marques S (2013) Diversity of benzylsuccinate synthase-like (bssA) genes in hydrocarbon-polluted marine sediments suggests substrate-dependent clustering. Appl Environ Microbiol 79:3667–3676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Luo F, Gitiafroz R, Devine CE, Gong Y, Hug LA, Raskin L, Edwards EA (2014) Metatranscriptome of an anaerobic benzene-degrading, nitrate-reducing enrichment culture reveals involvement of carboxylation in benzene ring activation. Appl Environ Microbiol 80:4095–4107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Selesi D, Jehmlich N, von Bergen M, Schmidt F, Rattei T, Tischler P et al (2010) Combined genomic and proteomic approaches identify gene clusters involved in anaerobic 2-methylnaphthalene degradation in the sulfate-reducing enrichment culture N47. J Bacteriol 192:295–306

    Article  CAS  PubMed  Google Scholar 

  59. Abu Laban N, Selesi D, Rattei T, Tischler P, Meckenstock RU (2010) Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. Environ Microbiol 12:2783–2796

    CAS  PubMed  Google Scholar 

  60. Muller EE, Glaab E, May P, Vlassis N, Wilmes P (2013) Condensing the omics fog of microbial communities. Trends Microbiol 21:325–333

    Article  CAS  PubMed  Google Scholar 

  61. Wu JH, Wu FY, Chuang HP, Chen WY, Huang HJ, Chen SH, Liu WT (2013) Community and proteomic analysis of methanogenic consortia degrading terephthalate. Appl Environ Microbiol 79:105–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Callaghan AV (2013) Metabolomic investigations of anaerobic hydrocarbon-impacted environments. Curr Opin Biotechnol 24:506–515

    Article  CAS  PubMed  Google Scholar 

  63. Scoma A, Hernandez-Sanabria E, Lacoere T, Junca H, Boon N, Pieper DH, Vilchez-Vargas R (2015) Primers: bacterial genes encoding enzymes for aerobic alkane degradation. In: McGenity TJ, Timmis KN, Nogales B (eds) Hydrocarbon and lipid microbiology protocols, Springer protocols handbooks. Humana Press, New York. doi:10.1007/8623_2015_140

    Google Scholar 

Download references

Acknowledgements

R.V.V. is a postdoctoral fellow supported by the Belgian Science Policy Office (BELSPO). E.H-S is funded by a postdoctoral fellowship from the Research Foundation of Flanders (Fonds Wetenschappelijk Onderzoek-Vlaanderen, FWO). A.S and DHP have received funding from the European Community’s Seventh Framework Programme (FP7/2007-2013) (MAGICPAH (FP7-KBBE-2009-245226) and BACSIN (project number 211684).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramiro Vilchez-Vargas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Hernandez-Sanabria, E. et al. (2016). Current Landscape of Biomolecular Approaches for Assessing Biodegradation of Aromatic Hydrocarbons. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2016_193

Download citation

  • DOI: https://doi.org/10.1007/8623_2016_193

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50427-7

  • Online ISBN: 978-3-662-50428-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics