Skip to main content

A Practical Protocol for Integration of Transcriptomics Data into Genome-Scale Metabolic Reconstructions

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

In recent years, an avalanche of data in the form of the so-called omics has been generated in biological sciences. Nevertheless, the effective use of this huge volume of data is challenging from a purely mathematical and statistical point of view, and integrative approaches are becoming a necessity. Genome-scale metabolic models offer an unprecedented chance to integrate and contextualise, in the correct biological context, this large amount of omics data being generated. This chapter provides a step-by-step protocol for the integration of transcriptomics data in genome-scale metabolic models by constructing condition-specific bacterial models. Subsequently, they are used to increase the accuracy of the in silico predictions in terms of metabolic flux prediction and for the better contextualisation of the transcriptomics data in the correct biological context. Two models environmental bacterial such as Pseudomonas putida KT2440 and Synechocystis sp. PCC 8063 and their corresponding GEMs are used here for such proposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ray JCJ, Tabor JJ, Igoshin OA (2011) Non-transcriptional regulatory processes shape transcriptional network dynamics. Nat Rev Microbiol 9(11):817–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Chubukov V, Gerosa L, Kochanowski K, Sauer U (2014) Coordination of microbial metabolism. Nat Rev Microbiol 12(5):327–340

    Article  CAS  PubMed  Google Scholar 

  3. Kochanowski K, Sauer U, Chubukov V (2013) Somewhat in control – the role of transcription in regulating microbial metabolic fluxes. Curr Opin Biotechnol 24(6):987–993

    Article  CAS  PubMed  Google Scholar 

  4. De Smet R, Marchal K (2010) Advantages and limitations of current network inference methods. Nat Rev Microbiol 8(10):717–729

    PubMed  Google Scholar 

  5. Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, Stolovitzky G (2010) Revealing strengths and weaknesses of methods for gene network inference. Proc Natl Acad Sci U S A 107(14):6286–6291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5(1):93–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Feist A, Herrgard M, Thiele I, Reed J, Palsson B (2009) Reconstruction of biochemical networks in microorganisms. Nat Rev Microbiol 7:129–143

    Article  CAS  PubMed  Google Scholar 

  8. Hyduke DR, Lewis NE, Palsson BO (2013) Analysis of omics data with genome-scale models of metabolism. Mol Biosyst 9(2):167–174

    Article  CAS  PubMed  Google Scholar 

  9. Nogales J (2014) A practical protocol for genome-scale metabolic reconstructions. Humana Press, New York, pp 1–25

    Google Scholar 

  10. Orth JD, Thiele I, Palsson BO (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lewis NE, Nagarajan H, Palsson BO (2012) Constraining the metabolic genotype–phenotype relationship using a phylogeny of in silico methods. Nat Rev Microbiol 10(4):291–305

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Schellenberger J, Que R, Fleming RMT, Thiele I, Orth JD, Feist AM, Zielinski DC, Bordbar A, Lewis NE, Rahmanian S et al (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2.0. Nat Protoc 6(9):1290–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Blazier AS, Papin JA (2012) Integration of expression data in genome-scale metabolic network reconstructions. Front Physiol 3

    Google Scholar 

  14. Kim MK, Lun DS (2014) Methods for integration of transcriptomic data in genome-scale metabolic models. Comput Struct Biotechnol J 11(18):59–65

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wiechert W (2001) 13C metabolic flux analysis. Metab Eng 3(3):195–206

    Article  CAS  PubMed  Google Scholar 

  16. Crown SB, Antoniewicz MR (2013) Publishing 13C metabolic flux analysis studies: a review and future perspectives. Metab Eng 20:42–48

    Article  CAS  PubMed  Google Scholar 

  17. Saha R, Chowdhury A, Maranas CD (2014) Recent advances in the reconstruction of metabolic models and integration of omics data. Curr Opin Biotechnol 29:39–45

    Article  CAS  PubMed  Google Scholar 

  18. Machado D, Herrgård M (2014) Systematic evaluation of methods for integration of transcriptomic data into constraint-based models of metabolism. PLoS Comput Biol 10(4), e1003580

    Article  PubMed  PubMed Central  Google Scholar 

  19. Becker SA, Palsson BO (2008) Context-specific metabolic networks are consistent with experiments. PLoS Comput Biol 4(5), e1000082

    Article  PubMed  PubMed Central  Google Scholar 

  20. Chandrasekaran S, Price ND (2010) Probabilistic integrative modeling of genome-scale metabolic and regulatory networks in Escherichia coli and Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 107(41):17845–17850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lewis NE, Schramm G, Bordbar A, Schellenberger J, Andersen MP, Cheng JK, Patel N, Yee A, Lewis RA, Eils R et al (2010) Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nat Biotechnol 28(12):1279–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bordbar A, Lewis NE, Schellenberger J, Palsson BØ, Jamshidi N (2010) Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol Syst Biol 6:422

    Article  PubMed  PubMed Central  Google Scholar 

  23. Chang RL, Xie L, Xie L, Bourne PE, Palsson BØ (2010) Drug off-target effects predicted using structural analysis in the context of a metabolic network model. PLoS Comput Biol 6(9), e1000938

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nogales J, Palsson B, Thiele I (2008) A genome-scale metabolic reconstruction of Pseudomonas putida KT2440: iJN746 as a cell factory. BMC Syst Biol 2(1):79

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gudmundsson S, Nogales J (2015) Cyanobacteria as photosynthetic biocatalysts: a systems biology perspective. Mol Biosyst 11(1):60–70

    Article  CAS  PubMed  Google Scholar 

  26. Nogales J, Gudmundsson S, Knight EM, Palsson BO, Thiele I (2012) Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis. Proc Natl Acad Sci U S A 109(7):2678–2683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kim J, Oliveros JC, Nikel PI, de Lorenzo V, Silva-Rocha R (2013) Transcriptomic fingerprinting of Pseudomonas putida under alternative physiological regimes. Environ Microbiol Rep 5(6):883–891

    Article  CAS  PubMed  Google Scholar 

  28. Chavarría M, Kleijn RJ, Sauer U, Pflüger-Grau K, de Lorenzo V (2012) Regulatory tasks of the phosphoenolpyruvate-phosphotransferase system of Pseudomonas putida in central carbon metabolism. MBio 3(2):e00028-12

    Article  PubMed  PubMed Central  Google Scholar 

  29. Anfelt J, Hallström B, Nielsen J, Uhlén M, Hudson EP (2013) Using transcriptomics to improve butanol tolerance of Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 79(23):7419–7427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rung J, Brazma A (2013) Reuse of public genome-wide gene expression data. Nat Rev Genet 14(2):89–99

    Article  CAS  PubMed  Google Scholar 

  31. Zur H, Ruppin E, Shlomi T (2010) iMAT: an integrative metabolic analysis tool. Bioinformatics 26(24):3140–3142

    Article  CAS  PubMed  Google Scholar 

  32. Lovász L (1999) Hit-and-run mixes fast. Math Program 86(3):443–461

    Article  Google Scholar 

  33. Schellenberger J, Palsson BØ (2009) Use of randomized sampling for analysis of metabolic networks. J Biol Chem 284(9):5457–5461

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. Herencias for testing the protocol and valuable discussion.

The research leading to these results has received funding from the Ministry of Economy and Competitiveness of Spain Grant BIO2012-39501, European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 311815 (SYNPOL project, http://www.synpol.org/) and European Union’s H2020 ERAIB LigBio project (PCIN-2014-113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Nogales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Nogales, J., Agudo, L. (2015). A Practical Protocol for Integration of Transcriptomics Data into Genome-Scale Metabolic Reconstructions. In: McGenity, T., Timmis, K., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols . Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_98

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_98

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50430-7

  • Online ISBN: 978-3-662-50432-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics