Improving Biocontainment with Synthetic Biology: Beyond Physical Containment

  • Markus SchmidtEmail author
  • Lei Pei
Part of the Springer Protocols Handbooks book series (SPH)


Genetically engineered organisms are per se subject to a biosafety risk assessment to define whether the resulting organism is safe for humans and the environment, either for contained use or environmental release. Contained use currently means physical containment and allows for a less strict assessment compared to environmental release. With developments in synthetic biology, we are currently witnessing the evolution of different forms of nonphysical containment enabled by sophisticated forms of genetic engineering, genome recoding, and xenobiology. Design and implementation of cells that use advanced suicide circuits, different genetic codes, alternative nucleic acids, amino acids, etc., will allow for a semantic or informational containment restricting and possibly eliminating horizontal gene flow with natural species. Here, we describe the scientific advances in this field and map the different approaches to design safe xeno-organisms. Finally, we address the questions that will have to be answered when semantic biocontainment systems become a reality.


Biocontainment Biosafety Risk Synthetic biology Xenobiology 



Author acknowledges the financial support of the EC-FP7 project METACODE (EC Grant No. 289572), and MS acknowledges the financial support of the EC-FP7 project ST-FLOW (EC Grant No. 289326).


  1. 1.
    Khalil AS, Collins JJ (2010) Synthetic biology: applications come of age. Nat Rev Genet 11(5):367–379CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Armstrong R, Schmidt M, Bedau M (2012) Other developments in synthetic biology. In: Schmidt M (ed) Synthetic biology industrial and environmental applications. Wiley, WeinheimGoogle Scholar
  3. 3.
    Moe-Behrens GH, Davis R, Haynes KA (2013) Preparing synthetic biology for the world. Front Microbiol 4:5CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
  5. 5.
  6. 6.
    Gaisser S, Reiss T, Lunkes A, Muller K, Bernauer H (2009) Making the most of synthetic biology. Strategies for synthetic biology development in Europe. EMBO Rep 10(Suppl 1):S5–S8CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Schmidt M, Ganguli-Mitra A, Torgersen H, Kelle A, Deplazes A, Biller-Andorno N (2009) A priority paper for the societal and ethical aspects of synthetic biology. Syst Synth Biol 3(1–4):3–7CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    The Royal Academy of Engineering (2009) Synthetic biology: scope, applications and implications. The Royal Academy of Engineering, LondonGoogle Scholar
  9. 9.
    Bubela T, Hagen G, Einsiedel E (2012) Synthetic biology confronts publics and policy makers: challenges for communication, regulation and commercialization. Trends Biotechnol 30(3):132–137CrossRefPubMedGoogle Scholar
  10. 10.
    Torgersen H, Schmidt M (2013) Frames and comparators: how might a debate on synthetic biology evolve? Futures 48(100):44–54CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wright O, Stan GB, Ellis T (2013) Building-in biosafety for synthetic biology. Microbiology 159(Pt 7):1221–1235CrossRefPubMedGoogle Scholar
  12. 12.
    Schmidt M, de Lorenzo V (2012) Synthetic constructs in/for the environment: managing the interplay between natural and engineered Biology. FEBS Lett 586(15):2199–2206CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wright O, Delmans M, Stan G-B, Ellis T (2014) GeneGuard: a modular plasmid system designed for biosafety. ACS Synth Biol 4:307–316CrossRefPubMedGoogle Scholar
  14. 14.
    Davison J (1999) Genetic exchange between bacteria in the environment. Plasmid 42(2):73–91CrossRefPubMedGoogle Scholar
  15. 15.
    Townsend JP, Bohn T, Nielsen KM (2012) Assessing the probability of detection of horizontal gene transfer events in bacterial populations. Front Microbiol 3:27CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Marris C, Jefferson C (2013) Workshop on “Synthetic biology: containment and release of engineered micro-organisms” held on 29 April 2013 at King’s College London: Summary of Discussions.
  17. 17.
    Kotula JW, Kerns SJ, Shaket LA, Siraj L, Collins JJ, Way JC, Silver PA (2014) Programmable bacteria detect and record an environmental signal in the mammalian gut. Proc Natl Acad Sci U S A 111:4838–4843CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cameron DE, Bashor CJ, Collins JJ (2014) A brief history of synthetic biology. Nat Rev Microbiol 12:381–390CrossRefPubMedGoogle Scholar
  19. 19.
    Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767):339–342CrossRefPubMedGoogle Scholar
  20. 20.
    Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional regulators. Nature 403(6767):335–338CrossRefPubMedGoogle Scholar
  21. 21.
    Campos L (2009) That was the synthetic biology that was. In: Schmidt M, Kelle A, Ganguli-Mitra A, de Vriend H (eds) Synthetic biology: the technoscience and its societal consequences. Springer, Dordrecht, pp 5–21CrossRefGoogle Scholar
  22. 22.
    Isaacs FJ, Dwyer DJ, Ding C, Pervouchine DD, Cantor CR, Collins JJ (2004) Engineered riboregulators enable post-transcriptional control of gene expression. Nat Biotechnol 22(7):841–847CrossRefPubMedGoogle Scholar
  23. 23.
    Bayer TS, Smolke CD (2005) Programmable ligand-controlled riboregulators of eukaryotic gene expression. Nat Biotechnol 23(3):337–343CrossRefPubMedGoogle Scholar
  24. 24.
    Basu S, Gerchman Y, Collins CH, Arnold FH, Weiss R (2005) A synthetic multicellular system for programmed pattern formation. Nature 434(7037):1130–1134CrossRefPubMedGoogle Scholar
  25. 25.
    Stricker J, Cookson S, Bennett MR, Mather WH, Tsimring LS, Hasty J (2008) A fast, robust and tunable synthetic gene oscillator. Nature 456(7221):516–519CrossRefPubMedGoogle Scholar
  26. 26.
    Brigulla M, Wackernagel W (2010) Molecular aspects of gene transfer and foreign DNA acquisition in prokaryotes with regard to safety issues. Appl Microbiol Biotechnol 86(4):1027–1041CrossRefPubMedGoogle Scholar
  27. 27.
    Yang S, Sleight SC, Sauro HM (2013) Rationally designed bidirectional promoter improves the evolutionary stability of synthetic genetic circuits. Nucleic Acids Res 41(1):e33CrossRefPubMedGoogle Scholar
  28. 28.
    Carroll D (2011) Zinc-finger nucleases: a panoramic view. Curr Gene Ther 11(1):2–10CrossRefPubMedGoogle Scholar
  29. 29.
    Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, Dulay GP, Hua KL, Ankoudinova I, Cost GJ, Urnov FD, Zhang HS, Holmes MC, Zhang L, Gregory PD, Rebar EJ (2011) A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 29(2):143–148CrossRefPubMedGoogle Scholar
  30. 30.
    Gaj T, Gersbach CA, Barbas CF 3rd (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31(7):397–405CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Sander JD, Joung JK (2014) CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol 32(4):347–355CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang RY, Algire MA, Benders GA, Montague MG, Ma L, Moodie MM, Merryman C, Vashee S, Krishnakumar R, Assad-Garcia N, Andrews-Pfannkoch C, Denisova EA, Young L, Qi ZQ, Segall-Shapiro TH, Calvey CH, Parmar PP, Hutchison CA 3rd, Smith HO, Venter JC (2010) Creation of a bacterial cell controlled by a chemically synthesized genome. Science 329(5987):52–56CrossRefPubMedGoogle Scholar
  33. 33.
    Annaluru N, Muller H, Mitchell LA, Ramalingam S, Stracquadanio G, Richardson SM, Dymond JS, Kuang Z, Scheifele LZ, Cooper EM, Cai Y, Zeller K, Agmon N, Han JS, Hadjithomas M, Tullman J, Caravelli K, Cirelli K, Guo Z, London V, Yeluru A, Murugan S, Kandavelou K, Agier N, Fischer G, Yang K, Martin JA, Bilgel M, Bohutski P, Boulier KM, Capaldo BJ, Chang J, Charoen K, Choi WJ, Deng P, DiCarlo JE, Doong J, Dunn J, Feinberg JI, Fernandez C, Floria CE, Gladowski D, Hadidi P, Ishizuka I, Jabbari J, Lau CY, Lee PA, Li S, Lin D, Linder ME, Ling J, Liu J, Liu J, London M, Ma H, Mao J, McDade JE, McMillan A, Moore AM, Oh WC, Ouyang Y, Patel R, Paul M, Paulsen LC, Qiu J, Rhee A, Rubashkin MG, Soh IY, Sotuyo NE, Srinivas V, Suarez A, Wong A, Wong R, Xie WR, Xu Y, Yu AT, Koszul R, Bader JS, Boeke JD, Chandrasegaran S (2014) Total synthesis of a functional designer eukaryotic chromosome. Science 344(6179):55–58CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Pennisi E (2014) Building the ultimate yeast genome. Science 343:1426–1429CrossRefPubMedGoogle Scholar
  35. 35.
    Budisa N, Minks C, Alefelder S, Wenger W, Dong F, Moroder L, Huber R (1999) Toward the experimental codon reassignment in vivo: protein building with an expanded amino acid repertoire. FASEB J 13(1):41–51PubMedGoogle Scholar
  36. 36.
    Hoesl MG, Budisa N (2012) Recent advances in genetic code engineering in Escherichia coli. Curr Opin Biotechnol 23(5):751–757CrossRefPubMedGoogle Scholar
  37. 37.
    Budisa N (2013) Expanded genetic code for the engineering of ribosomally synthetized and post-translationally modified peptide natural products (RiPPs). Curr Opin Biotechnol 24(4):591–598CrossRefPubMedGoogle Scholar
  38. 38.
    di Salvo ML, Budisa N, Contestabile R (2013) PLP-dependent Enzymes: a powerful tool for metabolic synthesis of non-canonical amino acids. In: Beilstein Bozen symposium on molecular engineering and control. Beilstein Institute, Prien, pp 27–66Google Scholar
  39. 39.
    Liu CC, Schultz PG (2010) Adding new chemistries to the genetic code. Annu Rev Biochem 79:413–444CrossRefPubMedGoogle Scholar
  40. 40.
    Neumann H, Wang K, Davis L, Garcia-Alai M, Chin JW (2010) Encoding multiple unnatural amino acids via evolution of a quadruplet-decoding ribosome. Nature 464(7287):441–444CrossRefPubMedGoogle Scholar
  41. 41.
    Ma Y, Biava H, Contestabile R, Budisa N, di Salvo ML (2014) Coupling bioorthogonal chemistries with artificial metabolism: intracellular biosynthesis of azidohomoalanine and its incorporation into recombinant proteins. Molecules 19(1):1004–1022CrossRefPubMedGoogle Scholar
  42. 42.
    Doering V (2007) Sense codon reassignment as means of synthesizing safe genetically engineered microorganism. SB3.0, ZurichGoogle Scholar
  43. 43.
    Campbell JH, O’Donoghue P, Campbell AG, Schwientek P, Sczyrba A, Woyke T, Soll D, Podar M (2013) UGA is an additional glycine codon in uncultured SR1 bacteria from the human microbiota. Proc Natl Acad Sci U S A 110(14):5540–5545CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Ling J, Daoud R, Lajoie MJ, Church GM, Soll D, Lang BF (2014) Natural reassignment of CUU and CUA sense codons to alanine in Ashbya mitochondria. Nucleic Acids Res 42(1):499–508CrossRefPubMedGoogle Scholar
  45. 45.
    Dymond JS, Richardson SM, Coombes CE, Babatz T, Muller H, Annaluru N, Blake WJ, Schwerzmann JW, Dai J, Lindstrom DL, Boeke AC, Gottschling DE, Chandrasegaran S, Bader JS, Boeke JD (2011) Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature 477(7365):471–476CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Isaacs FJ, Carr PA, Wang HH, Lajoie MJ, Sterling B, Kraal L, Tolonen AC, Gianoulis TA, Goodman DB, Reppas NB, Emig CJ, Bang D, Hwang SJ, Jewett MC, Jacobson JM, Church GM (2011) Precise manipulation of chromosomes in vivo enables genome-wide codon replacement. Science 333(6040):348–353CrossRefPubMedGoogle Scholar
  47. 47.
    Lajoie MJ, Kosuri S, Mosberg JA, Gregg CJ, Zhang D, Church GM (2013) Probing the limits of genetic recoding in essential genes. Science 342(6156):361–363CrossRefPubMedGoogle Scholar
  48. 48.
    Lajoie MJ, Rovner AJ, Goodman DB, Aerni HR, Haimovich AD, Kuznetsov G, Mercer JA, Wang HH, Carr PA, Mosberg JA, Rohland N, Schultz PG, Jacobson JM, Rinehart J, Church GM, Isaacs FJ (2013) Genomically recoded organisms expand biological functions. Science 342(6156):357–360CrossRefPubMedGoogle Scholar
  49. 49.
    Mandell DJ, Lajoie MJ, Mee MT, Takeuchi R, Kuznetsov G, Norville JE, Gregg CJ, Stoddard BL, Church GM (2015) Biocontainment of genetically modified organisms by synthetic protein design. Nature 518:55–60CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Rovner AJ, Haimovich AD, Katz SR, Li Z, Grome MW, Gassaway BM, Amiram M, Patel JR, Gallagher RR, Rinehart J, Isaacs FJ (2015) Recoded organisms engineered to depend on synthetic amino acids. Nature 518:89–93CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Sc2.0. “Synthetic Yeast 2.0”.
  52. 52.
    Ravikumar A, Arrieta A, Liu CC (2014) An orthogonal DNA replication system in yeast. Nat Chem Biol 10:175–177CrossRefPubMedGoogle Scholar
  53. 53.
    Marliere P, Patrouix J, Doring V, Herdewijn P, Tricot S, Cruveiller S, Bouzon M, Mutzel R (2011) Chemical evolution of a bacterium’s genome. Angew Chem Int Ed Engl 50(31):7109–7114CrossRefPubMedGoogle Scholar
  54. 54.
    Schmidt M (2010) Xenobiology: a new form of life as the ultimate biosafety tool. Bioessays 32(4):322–331CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Acevedo-Rocha CG, Budisa N (2011) On the road towards chemically modified organisms endowed with a genetic firewall. Angew Chem Int Ed Engl 50(31):6960–6962CrossRefPubMedGoogle Scholar
  56. 56.
    Burns CC, Shaw J, Campagnoli R, Jorba J, Vincent A, Quay J, Kew O (2006) Modulation of poliovirus replicative fitness in HeLa cells by deoptimization of synonymous codon usage in the capsid region. J Virol 80(7):3259–3272CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Coleman JR, Papamichail D, Skiena S, Futcher B, Wimmer E, Mueller S (2008) Virus attenuation by genome-scale changes in codon pair bias. Science 320(5884):1784–1787CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Mueller S, Coleman JR, Papamichail D, Ward CB, Nimnual A, Futcher B, Skiena S, Wimmer E (2010) Live attenuated influenza virus vaccines by computer-aided rational design. Nat Biotechnol 28(7):723–726CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Bull JJ, Molineux IJ, Wilke CO (2012) Slow fitness recovery in a codon-modified viral genome. Mol Biol Evol 29(10):2997–3004CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Barrick JE, Yu DS, Yoon SH, Jeong H, Oh TK, Schneider D, Lenski RE, Kim JF (2009) Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature 461(7268):1243–1247CrossRefPubMedGoogle Scholar
  61. 61.
    Eschenmoser A (1999) Chemical etiology of nucleic acid structure. Science 284(5423):2118–2124CrossRefPubMedGoogle Scholar
  62. 62.
    Pace NR (2001) The universal nature of biochemistry. Proc Natl Acad Sci U S A 98(3):805–808CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Chaput JC, Ichida JK, Szostak JW (2003) DNA polymerase-mediated DNA synthesis on a TNA template. J Am Chem Soc 125(4):856–857CrossRefPubMedGoogle Scholar
  64. 64.
    Ichida JK, Horhota A, Zou K, McLaughlin LW, Szostak JW (2005) High fidelity TNA synthesis by Therminator polymerase. Nucleic Acids Res 33(16):5219–5225CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Kempeneers V, Renders M, Froeyen M, Herdewijn P (2005) Investigation of the DNA-dependent cyclohexenyl nucleic acid polymerization and the cyclohexenyl nucleic acid-dependent DNA polymerization. Nucleic Acids Res 33(12):3828–3836CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Marliere P (2009) The farther, the safer: a manifesto for securely navigating synthetic species away from the old living world. Syst Synth Biol 3(1–4):77–84CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Yang Z, Hutter D, Sheng P, Sismour AM, Benner SA (2006) Artificially expanded genetic information system: a new base pair with an alternative hydrogen bonding pattern. Nucleic Acids Res 34(21):6095–6101CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Malyshev DA, Dhami K, Lavergne T, Chen T, Dai N, Foster JM, Correa IR, Romesberg FE (2014) A semi-synthetic organism with an expanded genetic alphabet. Nature 509:385–388CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Pinheiro VB, Taylor AI, Cozens C, Abramov M, Renders M, Zhang S, Chaput JC, Wengel J, Peak-Chew SY, McLaughlin SH, Herdewijn P, Holliger P (2012) Synthetic genetic polymers capable of heredity and evolution. Science 336(6079):341–344CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    SCHER, SCENIHR, SCCS (2014) Preliminary opinion on synthetic biology I definition.

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Technology Assessment, Biofaction KGViennaAustria

Personalised recommendations