Skip to main content

Protocols for Measuring Methanogenesis

  • Protocol
  • First Online:
Book cover Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Methanogenesis is one of the most important terminal processes in the microbial degradation of organic matter in many anoxic environments. Since ancient times, methane was known as a combustion gas, but its microbiological origin was proved only in the nineteenth century. The contribution of methane to the global warming and its beneficial importance in ecological biotechnology and bioenergetics dictate the need in proper estimations of its fluxes and measurements of its production rates in different microbiological processes.

Measuring methanogenesis is mostly conducted in laboratory experiments with different types of methanogenic samples, in fields or in ruminants. The samples used for such measurements are either liquid methanogenic cultures and slurries prepared by homogenization and dilution or intact soil cores. All types of methanogenic samples are incubated, and accumulated CH4 is analyzed in order to calculate methanogenesis rate. The samples as slurries incubated under laboratory conditions are referred to as potential production rates, whereas rates measured in intact samples or in fields are referred to as actual (in situ) production rates.

To initiate methanogenesis, characteristic substrates of methanogens are used as additions to the samples. Radiotracers are also used to measure rates of certain methanogenesis pathways in samples.

Classification of methods of measuring methanogenesis is based on the mass balance equation relating the rate of change in concentration of methane with its source and flux. The two major methods are described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolfe RS (1993) A historical overview of methanogenesis. In: Ferry JG (ed) Methanogenesis, Chapman & Hall microbiology series. Chapman & Hall, New York

    Google Scholar 

  2. Barker HA (ed) (1956) Bacterial fermentation. Wiley, New York

    Google Scholar 

  3. Ehhalt DH, Schmidt U (1978) Sources and sinks of atmospheric methane. Pageoph 116:452–464

    Article  CAS  Google Scholar 

  4. Großkopf R, Janssen PH, Liesack W (1998) Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl Environ Microbiol 64:960–969

    PubMed  PubMed Central  Google Scholar 

  5. Garcia JL (1990) Taxonomy and ecology of methanogens. FEMS Microbiol Rev 87:297–308. doi:10.1111/j.1574-6968.1990.tb04928.x

    Article  Google Scholar 

  6. Chan OC, Claus P, Casper P et al (2005) Vertical distribution of methanogenic archaeal community in Lake Dagow sediment. Environ Microbiol 7:1139–1149. doi:10.1111/j.1462-2920.2005.00790.x

    Article  CAS  PubMed  Google Scholar 

  7. Jeanthon C, L’Haridon S, Reysenbach AL et al (1999) Methanococcus vulcanius sp. nov., a novel hyperthermophilic methanogen isolated from East Pacific Rise, and identification of Methanococcus sp. DSM 4213T as Methanococcus fervens sp. nov. Int J Syst Evol Microbiol 49:583–589

    Google Scholar 

  8. Ganzert L, Jurgens G, Münster U et al (2007) Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol Ecol 59:476–488

    Article  CAS  PubMed  Google Scholar 

  9. Kobabe S, Wagner D, Pfeiffer EM (2004) Characterisation of microbial community composition of a Siberian tundra soil by fluorescence in situ hybridization. FEMS Microbiol Ecol 50:13–23. doi:10.1016/j.femsec.2004.05.003

    Article  CAS  PubMed  Google Scholar 

  10. Lin C, Raskin L, Stahl DA (1997) Microbial community structure in gastrointestinal tracts of domestic animals: comparative analyzes using rRNA-targeted oligonucleotide probes. FEMS Microbiol Ecol 22:281–294. doi:10.1111/j.1574-6941.1997.tb00380.x

    Article  CAS  Google Scholar 

  11. Brune A (2010) Methanogenesis in the digestive tract of termites. In: Hackstein JHP (ed) (Endo)symbiotic methanogenic archaea, vol 19, Microbiology monographs. Springer, Berlin. doi:10.1007/978-3-642-13615-3_1

    Chapter  Google Scholar 

  12. Hackstein JHP (2010) Anaerobic ciliates and their methanogenic endosymbionts. In: Hackstein JHP (ed) (Endo)symbiotic methanogenic archaea, vol 19, Microbiology monographs. Springer, Berlin. doi:10.1007/978-3-642-13615-3_1

    Chapter  Google Scholar 

  13. Bapteste E, Brochier C, Boucher Y (2005) Higher-level classification of the Archaea: evolution of methanogenesis and methanogens. Archaea 1:353–363. doi:10.1155/2005/859728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lefèvre F, Forget F (2009) Observed variations of methane on Mars unexplained by known atmospheric chemistry and physics. Nature 460(7256):720–723. doi:10.1038/nature08228

    Article  CAS  PubMed  Google Scholar 

  15. Börjesson P, Mattiasson B (2008) Biogas as a resource-efficient vehicle fuel. Trends Biotechnol 26:7–13

    Article  CAS  PubMed  Google Scholar 

  16. Beliaev SS, Ivanov MV (1975) The rate of methane formation by bacteria determined by isotopic labeling technique. Microbiology 44:166–168 (in Russian)

    Google Scholar 

  17. Lein AY, Ivanov MV (eds) (2009) Biogeochemical cycle of methane in the ocean. Nauka, Moscow (in Russian)

    Google Scholar 

  18. Min’ko OI, Kasparov SV, Amosova YM (1987) Gaseous compounds metabolic products of microbial coenoses of waterlogged soils. Biol Bull Rev 48:182–193

    Google Scholar 

  19. Orlov DS, Minko OI, Ammosova Ya M et al (1987) Research methods for soil gas function. In: Voroin AD, Orlov DS (eds) Modern physical and chemical methods of soil studies. MGU, Moscow (in Russian)

    Google Scholar 

  20. Alperin MJ, Reeburg WS, Whiticar MJ (1988) Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation. Glob Biogeochem Cycles 2:279–288

    Article  CAS  Google Scholar 

  21. Glagolev MV (1998) Modeling of production, oxidation and transportation processes of methane. In: Global Environment Research Fund: Eco-Frontier Fellowship (EFF) in 1997, Environment Agency. Global Environment Department. Research & Information Office, Tokyo

    Google Scholar 

  22. Panikov NS, Dedysh SN, Kolesnikov OM et al (2001) Metabolic and environmental control on methane emission from soils: mechanistic studies of mesotrophic fen in West Siberia. Water Air Soil Pollut Focus 1:415–428

    Article  CAS  Google Scholar 

  23. Martin JL, McCutcheon SC (eds) (1999) Hydrodynamics and transport for water quality modeling. Lewis, Boca Raton

    Google Scholar 

  24. Arsenin VY (1984) Methods of mathematical physics and higher functions. Nauka, Moscow (in Russian)

    Google Scholar 

  25. Bridgham SD, Richardson CJ (1992) Mechanisms controlling soil respiration (CO2 and CH4) in southern peatlands. Soil Biol Biochem 24:1089–1099

    Article  CAS  Google Scholar 

  26. Bodelier PLE, Hahn AP, Arth IR et al (2000) Effects of ammonium-based fertilisation on microbial processes involved in methane emission from soils planted with rice. Biogeochemistry 51:225–257

    Article  Google Scholar 

  27. Blodau C, Basiliko N, Moore TR (2004) Carbon turnover in peatland mesocosms exposed to different water table levels. Biogeochemistry 67:331–351

    Article  CAS  Google Scholar 

  28. Baldwin DS, Rees GN, Mitchell AM et al (2006) The short-term effects of salinization on anaerobic nutrient cycling and microbial community structure in sediment from a freshwater wetland. Wetlands 26:455–464

    Article  Google Scholar 

  29. Conrad R, Klose M (1999) Anaerobic conversion of carbon dioxide to methane, acetate and propionate on washed rice roots. FEMS Microbiol Ecol 30:147–155

    Article  CAS  PubMed  Google Scholar 

  30. Schulz S, Conrad R (1996) Influence of temperature on pathways to methane production in the permanently cold profundal sediment of Lake Constance. FEMS Microbiol Ecol 20:1–14

    Article  CAS  Google Scholar 

  31. Thebrath B, Mayer H-P, Conrad R (1992) Bicarbonate-dependent production and methanogenic consumption of acetate in anoxic paddy soil. FEMS Microbiol Ecol 86:295–302

    Article  CAS  Google Scholar 

  32. Conrad R, Klose M (2000) Selective inhibition of reactions involved in methanogenesis and fatty acid production on rice roots. FEMS Microbiol Ecol 34:27–34

    Article  CAS  PubMed  Google Scholar 

  33. Bartlett KB, Harriss RC, Sebacher DI (1985) Methane flux from coastal salt marshes. J Geophys Res 90:5710–5720

    Article  CAS  Google Scholar 

  34. Galy-Lacaux C, Delmas R, Jambert C et al (1997) Gaseous emissions and oxygen consumption in hydroelectric dams: a case study in French Guyana. Glob Biogeochem Cycles 11:471–483

    Article  CAS  Google Scholar 

  35. Nakano T, Sawamoto T, Morishita T et al (2004) A comparison of regression methods for estimating soil-atmosphere diffusion gas fluxes by a closed-chamber technique. Soil Biol Biochem 36:107–113

    Article  CAS  Google Scholar 

  36. Sabrekov AF, Runkle BRK, Glagolev MV et al (2014) Seasonal variability as a source of uncertainty in the West Siberian regional CH4 flux upscaling. Environ Res Lett 9(4): 045008. doi:10.1088/1748-9326/9/4/045008

  37. Pape L, Ammann C, Nyfeler-Brunner A et al (2009) An automated dynamic chamber system for surface exchange measurement of non-reactive and reactive trace gases of grassland ecosystems. Biogeosciences 6:405–429

    Article  CAS  Google Scholar 

  38. Stefanik KC, Mitsch WJ (2013) Metabolism and methane flux of dominant macrophyte communities in created riverine wetlands using open system flow through chambers. Ecol Eng. doi:10.1016/j.ecoleng.2013.10.036

    Google Scholar 

  39. Bedard C, Knowles R (1989) Physiology, biochemistry, and specific inhibitors of CH4, NH4 +, and CO oxidation by methanotrophs and nitrifiers. Microbiol Rev 53:68–84

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Novikov VV, Stepanov AL, Pozdnyakov AI et al (2004) Seasonal dynamics of CO2, CH4, N2O, and NO emissions from peat soils of the Yakhroma river floodplain. Eurasian Soil Sci 37:755–761

    Google Scholar 

  41. Dise NB (1992) Winter fluxes of methane from Minnesota peatlands. Biogeochemistry 17:71–83

    Article  CAS  Google Scholar 

  42. Baldocchi DD, Hicks BB, Meyers TP (1988) Measuring biosphere-atmosphere exchanges of biologically related gases with micrometeorological methods. Ecology 69:1331–1340

    Article  Google Scholar 

  43. Brouček J (2014) Methods of methane measurement in ruminants. Slovak J Anim Sci 47:51–60

    Google Scholar 

  44. Harper LA, Denmead OT, Flesch TK (2011) Micrometeorological techniques for measurement of enteric greenhouse gas emissions. Anim Feed Sci Technol 166–167:227–239

    Article  CAS  Google Scholar 

  45. Garnsworthy PC, Craigon J, Hernandez-Medrano JH et al (2012) On-farm methane measurements during milking correlate with total methane production by individual dairy cows. J Dairy Sci 95:3166–3180

    Article  CAS  PubMed  Google Scholar 

  46. Derno M, Elsner HG, Paetow EA et al (2009) Technical note: a new facility for continuous respiration measurements in lactating cows. J Dairy Sci 92:2804–2808

    Article  CAS  PubMed  Google Scholar 

  47. Lassey K, Walker C, McMillan A et al (2001) On the performance of SF6 permeation tubes used in determining methane emission from grazing livestock. Chemosphere Global Change Sci 3:367–376

    Article  CAS  Google Scholar 

  48. Martin C, Rouel J, Jouany JP et al (2008) Methane output and diet digestibility in response to feeding dairy cows crude linseed, extruded linseed, or linseed oil. J Anim Sci 86:2642–2650

    Article  CAS  PubMed  Google Scholar 

  49. Storm IMLD, Hellwing ALF, Nielsen NI et al (2012) Methods for measuring and estimating methane emission from ruminants. Animals 2:160–183

    Article  PubMed  PubMed Central  Google Scholar 

  50. Hegarty RS (2013) Applicability of short-term emission measurements for on-farm quantification of enteric methane. Animal 7:401–408

    Article  PubMed  Google Scholar 

  51. Lü F, Ji J, Shao L et al (2013) Bacterial bioaugmentation for improving methane and hydrogen production from microalgae. Biotechnol Biofuels 6:92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Esposito G, Frunzo L, Liotta F et al (2012) Bio-methane potential tests to measure the biogas production from the digestion and co-digestion of complex organic substrates. TOENVIEJ 5:1–8

    Article  CAS  Google Scholar 

  53. Wolin EA, Wolin MG, Wolfe RS (1963) Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886

    CAS  PubMed  Google Scholar 

  54. Nakano T, Kuniyoshi S, Fukuda M (2000) Temporal variation in methane emission from tundra wetlands in a permafrost area, northeastern Siberia. Atmos Environ 34:1205–1213

    Article  CAS  Google Scholar 

  55. Silvola J, Saarnio S, Foot J et al (2003) Effects of elevated CO2 and N deposition on CH4 emissions from European mires. Glob Biogeochem Cycles 17(2):1068. doi:10.1029/2002GB001886

    Article  CAS  Google Scholar 

  56. Augustin J, Merbach W, Rogasik J (1998) Factors influencing nitrous oxide and methane emissions from minerotrophic fens in northeast Germany. Biol Fertil Soils 28:1–4

    Article  CAS  Google Scholar 

  57. Poth M, Anderson IC, Miranda HS et al (1995) The magnitude and persistence of soil NO, N2O, CH4, and CO2 fluxes from burned tropical savanna in Brazil. Glob Biogeochem Cycles 9:503–513

    Article  CAS  Google Scholar 

  58. Crill PM (1991) Seasonal patterns of methane uptake and carbon dioxide release by a temperate woodland soil. Glob Biogeochem Cycles 5:319–334

    Article  CAS  Google Scholar 

  59. Frenzel P, Karofeld E (2000) CH4 emission from a hollow-ridge complex in a raised bog: the role of CH4 production and oxidation. Biogeochemistry 51:91–112

    Article  CAS  Google Scholar 

  60. Glagolev MV, Sabrekov AF, Kleptsova IE et al (2012) Methane emission from bogs in the subtaiga of Western Siberia: the development of standard model. Eurasian Soil Sci 45:947–957. doi:10.1134/S106422931210002X

    Article  CAS  Google Scholar 

  61. Granberg G, Mikkela C, Sundh I et al (1997) Sources of spatial variation in methane emission from mires in northern Sweden: a mechanistic approach in statistical modeling. Glob Biogeochem Cycles 11:135–150

    Article  CAS  Google Scholar 

  62. Panikov NS, Dedysh SN (2000) Cold season CH4 and CO2 emission from boreal peat bogs (West Siberia): winter fluxes and thaw activation dynamics. Glob Biogeochem Cycles 14:1071–1080

    Article  CAS  Google Scholar 

  63. Chanton JP, Whiting GJ, Showers WJ et al (1992) Methane flux from Peltandra virginica: stable isotope tracing and chamber effects. Glob Biogeochem Cycles 6:15–31

    Article  CAS  Google Scholar 

  64. Press WH, Teukolsky SA, Vetterling WT et al (1995) Numerical recipes in FORTRAN. The art of scientific computing. Cambridge University Press, Cambridge

    Google Scholar 

  65. Kays WM (1966) Convective heat and mass transfer. McGraw-Hill, New York

    Google Scholar 

  66. Ertekin T, Abou-Kassem JH, King GR (2001) Basic applied reservoir simulation. Society of Petroleum Engineers, Richardson

    Google Scholar 

  67. Odum EP (1983) Basic ecology. Saunders College, Philadelphia

    Google Scholar 

  68. Christensen TR, Michelsen A, Jonasson S et al (1997) Carbon dioxide and methane exchange of a subarctic heath in response to climate change related environmental manipulations. OIKOS 79:34–44

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Kotsyurbenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Kotsyurbenko, O., Glagolev, M. (2015). Protocols for Measuring Methanogenesis. In: McGenity, T., Timmis, K., Nogales, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_89

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_89

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49138-6

  • Online ISBN: 978-3-662-49140-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics