Advertisement

Quantitative Physiology Approaches to Understand and Optimize Reducing Power Availability in Environmental Bacteria

  • Pablo I. Nikel
  • Max ChavarríaEmail author
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

The understanding of how carbon fluxes are distributed through a metabolic network offers an overview of the pathways that a given microorganism uses to produce energy, reducing power, and biomass. These invaluable data are related to the physiological state of the cell and provide information about the metabolic potential of microorganisms for specific environmental and biotechnological applications such as the degradation of toxic compounds (e.g., hydrocarbons) or the targeted production of high value-added products (e.g., lipids). Here, we propose a general approach to explore the pathways involved in NADPH balance in bacteria, which are in turn responsible for maintaining redox homeostasis and endowing the microorganism with the ability to counteract oxidative stress. We focus on the fluxes catalyzed by NADP+-dependent enzymes in the metabolic network of the model soil bacterium Pseudomonas putida KT2440. This environmental microorganism is a promising cell factory for a number of NADPH-dependent biotransformations, including industrial and bioremediation processes. The relevant enzymes involved in redox balance in strain KT2440 are (1) glucose-6-phosphate dehydrogenase, (2) 6-phosphogluconate dehydrogenase, (3) isocitrate dehydrogenase, (4) malic enzyme, and (5) 2-keto-6-phosphogluconate reductase. NADPH can be generated or consumed by other enzymatic reactions depending on the microorganism; however, the first four enzymes listed above are recognized as a major source of reducing power in a wide variety of microorganisms. The present protocol includes a first stage in which the NADPH balance is derived from fluxomic data and in vitro enzymatic assays. A second step is then proposed, where the redox ratios of pyridine dinucleotides and the cell capacity to counter oxidative stress are qualitatively correlated.

Keywords:

Central carbon metabolism Fluxomics Metabolic optimality NADPH Oxidative stress Pseudomonas putida 

References

  1. 1.
    Nicholson JK, Lindon JC (2008) Metabonomics. Nature 455:1054–1056CrossRefPubMedGoogle Scholar
  2. 2.
    Joyce AR, Palsson BØ (2006) The model organism as a system: integrating “omics” data sets. Nat Rev Mol Cell Biol 7:198–210CrossRefPubMedGoogle Scholar
  3. 3.
    Zhang W, Li F, Nie L (2010) Integrating multiple “omics” analysis for microbial biology: application and methodologies. Microbiology 156:287–301CrossRefPubMedGoogle Scholar
  4. 4.
    Blankenburg M, Haberland L, Elvers H-D, Tannert C, Jandrig B (2009) High-throughput omics technologies: potential tools for the investigation of influences of EMF on biological systems. Curr Genomics 10:86–92CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gatherer D (2010) So what do we really mean when we say that systems biology is holistic? BMC Syst Biol 4:22CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Kell DB (2004) Metabolomics and systems biology: making sense of the soup. Curr Opin Microbiol 7:296–307CrossRefPubMedGoogle Scholar
  7. 7.
    Winter G, Krömer JO (2013) Fluxomics - connecting omics analysis and phenotypes. Environ Microbiol 15:1901–1916CrossRefPubMedGoogle Scholar
  8. 8.
    Liu L, Agren R, Bordel S, Nielsen J (2010) Use of genome-scale metabolic models for understanding microbial physiology. FEBS Lett 584:2556–2564CrossRefPubMedGoogle Scholar
  9. 9.
    Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664CrossRefPubMedGoogle Scholar
  10. 10.
    Chavarría M, Kleijn RJ, Sauer U, Pflüger-Grau K, de Lorenzo V (2012) Regulatory tasks of the phosphoenolpyruvate-phosphotransferase system of Pseudomonas putida in central carbon metabolism. mBio 3, e00028-12CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Fuhrer T, Fischer E, Sauer U (2005) Experimental identification and quantification of glucose metabolism in seven bacterial species. J Bacteriol 187:1581–1590CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Sauer U, Eikmanns BJ (2005) The PEP-pyruvate-oxaloacetate node as the switch point for carbon flux distribution in bacteria. FEMS Microbiol Rev 29:765–794CrossRefPubMedGoogle Scholar
  13. 13.
    Dauner M, Bailey JE, Sauer U (2001) Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. Biotechnol Bioeng 76:144–156CrossRefPubMedGoogle Scholar
  14. 14.
    del Castillo T, Ramos JL, Rodríguez-Herva JJ, Fuhrer T, Sauer U, Duque E (2007) Convergent peripheral pathways catalyze initial glucose catabolism in Pseudomonas putida: genomic and flux analysis. J Bacteriol 189:5142–5152CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Berger A, Dohnt K, Tielen P, Jahn D, Becker J, Wittmann C (2014) Robustness and plasticity of metabolic pathway flux among uropathogenic isolates of Pseudomonas aeruginosa. PLoS One 9, e88368CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Sauer U, Lasko DR, Fiaux J et al (1999) Metabolic flux ratio analysis of genetic and environmental modulations of Escherichia coli central carbon metabolism. J Bacteriol 181:6679–6688PubMedPubMedCentralGoogle Scholar
  17. 17.
    Perrenoud A, Sauer U (2005) Impact of global transcriptional regulation by ArcA, ArcB, Cra, Crp, Cya, Fnr, and Mlc on glucose catabolism in Escherichia coli. J Bacteriol 187:3171–3179CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Stephanopoulos G (1999) Metabolic fluxes and metabolic engineering. Metab Eng 1:1–11CrossRefPubMedGoogle Scholar
  19. 19.
    Blank LM, Ionidis G, Ebert BE, Bühler B, Schmid A (2008) Metabolic response of Pseudomonas putida during redox biocatalysis in the presence of a second octanol phase. FEBS J 275:5173–5190CrossRefPubMedGoogle Scholar
  20. 20.
    Xiong W, Liu L, Wu C, Yang C, Wu Q (2010) 13C-Tracer and gas chromatography–mass spectrometry analyses reveal metabolic flux distribution in the oleaginous microalga Chlorella protothecoides. Plant Physiol 154:1001–1011CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Shi H, Shiraishi M, Shimizu K (1997) Metabolic flux analysis for biosynthesis of poly(β-hydroxybutyric acid) in Alcaligenes eutrophus from various carbon sources. J Ferment Bioeng 84:579–587CrossRefGoogle Scholar
  22. 22.
    Tyo KEJ, Fischer CR, Simeon F, Stephanopoulos G (2010) Analysis of polyhydroxybutyrate flux limitations by systematic genetic and metabolic perturbations. Metab Eng 12:187–195CrossRefPubMedGoogle Scholar
  23. 23.
    Nanchen A, Fuhrer T, Sauer U (2007) Determination of metabolic flux ratios from 13C-experiments and gas chromatography–mass spectrometry data: protocol and principles. Methods Mol Biol 358:177–197CrossRefPubMedGoogle Scholar
  24. 24.
    Fischer E, Sauer U (2005) Large-scale in vivo flux analysis shows rigidity and suboptimal performance of Bacillus subtilis metabolism. Nat Genet 37:636–640CrossRefPubMedGoogle Scholar
  25. 25.
    Dauner M, Sauer U (2000) GC-MS analysis of amino acids rapidly provides rich information for isotopomer balancing. Biotechnol Prog 16:642–649CrossRefPubMedGoogle Scholar
  26. 26.
    Sauer U (2006) Metabolic networks in motion: 13C-based flux analysis. Mol Syst Biol 2:62CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Fischer E, Zamboni N, Sauer U (2004) High-throughput metabolic flux analysis based on gas chromatography–mass spectrometry derived 13C constraints. Anal Biochem 325:308–316CrossRefPubMedGoogle Scholar
  28. 28.
    Fischer E, Sauer U (2003) Metabolic flux profiling of Escherichia coli mutants in central carbon metabolism using GC-MS. Eur J Biochem 270:880–891CrossRefPubMedGoogle Scholar
  29. 29.
    Kleijn RJ, Buescher JM, Le Chat L, Jules M, Aymerich S, Sauer U (2010) Metabolic fluxes during strong carbon catabolite repression by malate in Bacillus subtilis. J Biol Chem 285:1587–1596CrossRefPubMedGoogle Scholar
  30. 30.
    Meijnen JP, de Winde JH, Ruijssenaars HJ (2012) Metabolic and regulatory rearrangements underlying efficient D-xylose utilization in engineered Pseudomonas putida S12. J Biol Chem 287:14606–14614CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Yang C, Hua Q, Shimizu K (2002) Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose. Metab Eng 4:202–216CrossRefPubMedGoogle Scholar
  32. 32.
    Nissen TL, Schulze U, Nielsen J, Villadsen J (1997) Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology 143:203–218CrossRefPubMedGoogle Scholar
  33. 33.
    Christensen B, Nielsen J (1999) Isotopomer analysis using GC-MS. Metab Eng 1:282–290CrossRefPubMedGoogle Scholar
  34. 34.
    Nikel PI, Zhu J, San KY, Méndez BS, Bennett GN (2009) Metabolic flux analysis of Escherichia coli creB and arcA mutants reveals shared control of carbon catabolism under microaerobic growth conditions. J Bacteriol 191:5538–5548CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Emmerling M, Dauner M, Ponti A et al (2002) Metabolic flux responses to pyruvate kinase knockout in Escherichia coli. J Bacteriol 184:152–164CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Massou S, Nicolas C, Letisse F, Portais JC (2007) NMR-based fluxomics: quantitative 2D NMR methods for isotopomers analysis. Phytochemistry 68:2330–2340CrossRefPubMedGoogle Scholar
  37. 37.
    Sekiyama Y, Kikuchi J (2007) Towards dynamic metabolic network measurements by multi-dimensional NMR-based fluxomics. Phytochemistry 68:2320–2329CrossRefPubMedGoogle Scholar
  38. 38.
    Sauer U (2004) High-throughput phenomics: experimental methods for mapping fluxomes. Curr Opin Biotechnol 15:58–63CrossRefPubMedGoogle Scholar
  39. 39.
    Nargund S, Joffe ME, Tran D, Tugarinov V, Sriram G (2013) Nuclear magnetic resonance methods for metabolic fluxomics. Methods Mol Biol 985:335–351CrossRefPubMedGoogle Scholar
  40. 40.
    Chavarría M, Nikel PI, Pérez-Pantoja D, de Lorenzo V (2013) The Entner-Doudoroff pathway empowers Pseudomonas putida KT2440 with a high tolerance to oxidative stress. Environ Microbiol 15:1772–1785CrossRefPubMedGoogle Scholar
  41. 41.
    Banga JR (2008) Optimization in computational systems biology. BMC Syst Biol 2:47CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Fuhrer T, Sauer U (2009) Different biochemical mechanisms ensure network-wide balancing of reducing equivalents in microbial metabolism. J Bacteriol 191:2112–2121CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Chen X, Li S, Liu L (2014) Engineering redox balance through cofactor systems. Trends Biotechnol 32:337–343CrossRefPubMedGoogle Scholar
  44. 44.
    Singh R, Mailloux RJ, Puiseux-Dao S, Appanna VD (2007) Oxidative stress evokes a metabolic adaptation that favors increased NADPH synthesis and decreased NADH production in Pseudomonas fluorescens. J Bacteriol 189:6665–6675CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Berríos-Rivera SJ, Bennett GN, San KY (2002) Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD+-dependent formate dehydrogenase. Metab Eng 4:217–229CrossRefPubMedGoogle Scholar
  46. 46.
    Berríos-Rivera SJ, Bennett GN, San KY (2002) The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures. Metab Eng 4:230–237CrossRefPubMedGoogle Scholar
  47. 47.
    Ruiz JA, de Almeida A, Godoy MS et al (2013) Escherichia coli redox mutants as microbial cell factories for the synthesis of reduced biochemicals. Comput Struct Biotechnol J 3, e201210019PubMedPubMedCentralGoogle Scholar
  48. 48.
    Storz G, Imlay JA (1999) Oxidative stress. Curr Opin Microbiol 2:188–194CrossRefPubMedGoogle Scholar
  49. 49.
    Cabiscol E, Tamarit J, Ros J (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol 3:3–8PubMedGoogle Scholar
  50. 50.
    Carmel-Harel O, Storz G (2000) Roles of the glutathione- and thioredoxin-dependent reduction systems in the Escherichia coli and Saccharomyces cerevisiae responses to oxidative stress. Annu Rev Microbiol 54:439–461CrossRefPubMedGoogle Scholar
  51. 51.
    Masip L, Veeravalli K, Georgiou G (2006) The many faces of glutathione in bacteria. Antioxid Redox Signal 8:753–762CrossRefPubMedGoogle Scholar
  52. 52.
    Romano AH, Conway T (1996) Evolution of carbohydrate metabolic pathways. Res Microbiol 147:448–455CrossRefPubMedGoogle Scholar
  53. 53.
    Downs DM (2006) Understanding microbial metabolism. Annu Rev Microbiol 60:533–559CrossRefPubMedGoogle Scholar
  54. 54.
    Sudarsan S, Dethlefsen S, Blank LM, Siemann-Herzberg M, Schmid A (2014) The functional structure of central carbon metabolism in Pseudomonas putida KT2440. Appl Environ Microbiol 80:5292–5303CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Conway T (1992) The Entner-Doudoroff pathway: history, physiology and molecular biology. FEMS Microbiol Rev 9:1–27CrossRefPubMedGoogle Scholar
  56. 56.
    Poulsen BR, Nøhr J, Douthwaite S et al (2005) Increased NADPH concentration obtained by metabolic engineering of the pentose phosphate pathway in Aspergillus niger. FEBS J 272:1313–1325CrossRefGoogle Scholar
  57. 57.
    Lee WH, Park JB, Park K, Kim MD, Seo JH (2007) Enhanced production of ε-caprolactone by overexpression of NADPH-regenerating glucose 6-phosphate dehydrogenase in recombinant Escherichia coli harboring cyclohexanone monooxygenase gene. Appl Microbiol Biotechnol 76:329–338CrossRefPubMedGoogle Scholar
  58. 58.
    Marino D, González EM, Frendo P, Puppo A, Arrese-Igor C (2007) NADPH recycling systems in oxidative stressed pea nodules: a key role for the NADP+-dependent isocitrate dehydrogenase. Planta 225:413–421CrossRefPubMedGoogle Scholar
  59. 59.
    Rippa M, Giovannini PP, Barrett MP, Dallocchio F, Hanau S (1998) 6-Phosphogluconate dehydrogenase: the mechanism of action investigated by a comparison of the enzyme from different species. Biochim Biophys Acta 1429:83–92CrossRefPubMedGoogle Scholar
  60. 60.
    Moritz B, Striegel K, De Graaf AA, Sahm H (2000) Kinetic properties of the glucose-6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. Eur J Biochem 267:3442–3452CrossRefPubMedGoogle Scholar
  61. 61.
    Minard KI, McAlister-Henn L (2005) Sources of NADPH in yeast vary with carbon source. J Biol Chem 280:39890–39896CrossRefPubMedGoogle Scholar
  62. 62.
    Miyagi H, Kawai S, Murata K (2009) Two sources of mitochondrial NADPH in the yeast Saccharomyces cerevisiae. J Biol Chem 284:7553–7560CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Wynn JP, Ratledge C (1997) Malic enzyme is a major source of NADPH for lipid accumulation by Aspergillus nidulans. Microbiology 143:253–257CrossRefGoogle Scholar
  64. 64.
    Ayala A, F-Lobato M, Machado A (1986) Malic enzyme levels are increased by the activation of NADPH-consuming pathways: detoxification processes. FEBS Lett 202:102–106CrossRefPubMedGoogle Scholar
  65. 65.
    Blank LM, Lehmbeck F, Sauer U (2005) Metabolic-flux and network analysis in fourteen hemiascomycetous yeasts. FEMS Yeast Res 5:545–558CrossRefPubMedGoogle Scholar
  66. 66.
    Remize F, Andrieu E, Dequin S (2000) Engineering of the pyruvate dehydrogenase bypass in Saccharomyces cerevisiae: role of the cytosolic Mg2+ and mitochondrial K+ acetaldehyde dehydrogenases Ald6p and Ald4p in acetate formation during alcoholic fermentation. Appl Environ Microbiol 66:3151–3159CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Nikel PI, Kim J, de Lorenzo V (2014) Metabolic and regulatory rearrangements underlying glycerol metabolism in Pseudomonas putida KT2440. Environ Microbiol 16:239–254CrossRefPubMedGoogle Scholar
  68. 68.
    Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279:6613–6619CrossRefPubMedGoogle Scholar
  69. 69.
    Rühl M, Le Coq D, Aymerich S, Sauer U (2012) 13C-Flux analysis reveals NADPH-balancing transhydrogenation cycles in stationary phase of nitrogen-starving Bacillus subtilis. J Biol Chem 287:27959–27970CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Singh R, Lemire J, Mailloux RJ, Appanna VD (2008) A novel strategy involved anti-oxidative defense: the conversion of NADH into NADPH by a metabolic network. PLoS One 3, e2682CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Sprenger GA (1995) Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12. Arch Microbiol 164:324–330CrossRefPubMedGoogle Scholar
  72. 72.
    Dean AM, Golding GB (1997) Protein engineering reveals ancient adaptive replacements in isocitrate dehydrogenase. Proc Natl Acad Sci U S A 94:3104–3109CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Eyzaguirre J, Cornwell E, Borie G, Ramirez B (1973) Two malic enzymes in Pseudomonas aeruginosa. J Bacteriol 116:215–221PubMedPubMedCentralGoogle Scholar
  74. 74.
    Nelson KE, Weinel C, Paulsen IT et al (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808CrossRefPubMedGoogle Scholar
  75. 75.
    Nikel PI, Martínez-García E, de Lorenzo V (2014) Biotechnological domestication of pseudomonads using synthetic biology. Nat Rev Microbiol 12:368–379CrossRefPubMedGoogle Scholar
  76. 76.
    Zamboni N, Fendt S-M, Rühl M, Sauer U (2009) 13C-based metabolic flux analysis. Nat Protoc 4:878–892CrossRefPubMedGoogle Scholar
  77. 77.
    Zamboni N, Fischer E, Sauer U (2005) FiatFlux - a software for metabolic flux analysis from 13C-glucose experiments. BMC Bioinformatics 6:209CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  79. 79.
    Bernofsky C, Swan M (1973) An improved cycling assay for nicotinamide adenine dinucleotide. Anal Biochem 53:452–458CrossRefPubMedGoogle Scholar
  80. 80.
    Nikel PI, Pettinari MJ, Ramirez MC, Galvagno MA, Méndez BS (2008) Escherichia coli arcA mutants: metabolic profile characterization of microaerobic cultures using glycerol as a carbon source. J Mol Microbiol Biotechnol 15:48–54CrossRefPubMedGoogle Scholar
  81. 81.
    Nikel PI, Pettinari MJ, Galvagno MA, Méndez BS (2010) Metabolic selective pressure stabilizes plasmids carrying biosynthetic genes for reduced biochemicals in Escherichia coli redox mutants. Appl Microbiol Biotechnol 88:563–573CrossRefPubMedGoogle Scholar
  82. 82.
    Leonardo MR, Dailly Y, Clark DP (1996) Role of NAD in regulating the adhE gene of Escherichia coli. J Bacteriol 178:6013–6018PubMedPubMedCentralGoogle Scholar
  83. 83.
    Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring HarborGoogle Scholar
  84. 84.
    Nikel PI, de Lorenzo V (2013) Engineering an anaerobic metabolic regime in Pseudomonas putida KT2440 for the anoxic biodegradation of 1,3-dichloroprop-1-ene. Metab Eng 15:98–112CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Systems and Synthetic Biology ProgramCentro Nacional de Biotecnología (CNB-CSIC)CantoblancoSpain
  2. 2.Escuela de Química & Centro de Investigaciones en Productos Naturales (CIPRONA), Universidad de Costa RicaSan JoséCosta Rica
  3. 3.Centro Nacional de Innovaciones Biotecnológicas (CENIBiot), CeNAT-CONARESan JoséCosta Rica

Personalised recommendations