Advertisement

Imaging Bacterial Cells and Biofilms Adhering to Hydrophobic Organic Compound–Water Interfaces

  • Alexis Canette
  • Priscilla Branchu
  • Régis GrimaudEmail author
  • Murielle Naïtali
Protocol
Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Assimilation of hydrophobic organic compound (HOC) entails frequently the formation of biofilm at the HOC–water interface. Knowledge on the behavior of cells at the oil–water interface and within the structured biofilm is therefore important to understand the degradation of the HOC in ecosystems. The adhesion and biofilm formation on oil–water interface are best documented by microscopic observations. In this chapter we thus describe two methods for observation of bacterial cells and biofilms growing at the HOC–water interface. The first method uses CLSM (confocal laser scanning microscopy) to obtain in situ images of biofilm developing on thin paraffin strip which offers a flat transparent surface allowing imaging directly through the bottom of the culture dish without sampling. Alternatively, the biofilm can be grown on a paraffin strip deposited on a glass microscope slide and then imaged from the top when high resolution is needed. The second method addresses the problem of the ultrastructure of biofilm developing on HOC. It enables to obtain by TEM (transmission electron microscopy) images of cross sections of biofilms with identification of the side in contact with the HOC.

Keywords:

Adhesion Biofilm CLSM Hydrocarbons Lipids Oleolytic bacteria TEM 

Notes

Acknowledgment

We thank the MIMA2 platform (www.jouy.inra.fr/mima2) for its expertise and access to microscopy equipments and Michael Trichet (Institut de Biologie Paris-Seine, Université P. et M. Curie) for his advices and comments for TEM. We gratefully acknowledge the French National Research Agency, project AD’HOC ANR-11-BSV7-0002, for financial support.

References

  1. 1.
    Klein B, Grossi V, Bouriat P, Goulas P, Grimaud R (2008) Cytoplasmic wax ester accumulation during biofilm-driven substrate assimilation at the alkane–water interface by Marinobacter hydrocarbonoclasticus SP17. Res Microbiol 159(2):137–144CrossRefPubMedGoogle Scholar
  2. 2.
    Tanaka D, Takashima M, Mizuta A, Tanaka S, Sakatoku A, Nishikawa A, Osawa T, Noguchi M, Aizawa SI, Nakamura S (2010) Acinetobacter sp. Ud-4 efficiently degrades both edible and mineral oils: isolation and characterization. Curr Microbiol 60:203–209CrossRefPubMedGoogle Scholar
  3. 3.
    Bouchez-Naïtali M, Rakatozafy H, Marchal R, Leveau JY, Vandecasteele JP (1999) Diversity of bacterial strains degrading hexadecane in relation to the mode of substrate uptake. J Appl Microbiol 86(3):421–428CrossRefPubMedGoogle Scholar
  4. 4.
    Grimaud R (2010) Biofilm development at interfaces between hydrophobic organic compounds and water. In: Timmis KN, McGenity T, de Lorenzo V, van der Meer JR (eds) Handbook of hydrocarbons and lipid microbiology. Springer, Berlin, pp 1491–1499CrossRefGoogle Scholar
  5. 5.
    Mounier J, Camus A, Mitteau I, Vaysse PJ, Goulas P, Grimaud R, Sivadon P (2014) The marine bacterium Marinobacter hydrocarbonoclasticus SP17 degrades a wide range of lipids and hydrocarbons through the formation of oleolytic biofilms with distinct gene expression profiles. FEMS Microbiol Ecol 90:816–831CrossRefPubMedGoogle Scholar
  6. 6.
    Harms H, Smith KEC, Wick LY (2010) Introduction: problems of hydrophobicity/bioavailability. In: Timmis KN, McGenity T, de Lorenzo V, van der Meer JR (eds) Handbook of hydrocarbons and lipid microbiology. Springer, Berlin, pp 1437–1450CrossRefGoogle Scholar
  7. 7.
    Heipieper HJ, Cornelissen S, Pepi M (2010) Surface properties and cellular energetics of bacteria in response to the presence of hydrocarbons. In: Timmis KN, McGenity T, de Lorenzo V, van der Meer JR (eds) Handbook of hydrocarbons and lipid microbiology. Springer, Berlin, pp 1615–1624CrossRefGoogle Scholar
  8. 8.
    Whyte LG, Slagman SJ, Pietrantonio F, Bourbonnière L, Koval SF, Lawrence JR, Inniss WE, Greer CW (1999) Physiological adaptations involved in alkane assimilation at a low temperature by Rhodococcus sp. strain Q15. Appl Environ Microbiol 65:2961–2968PubMedPubMedCentralGoogle Scholar
  9. 9.
    Eriksson M, Dalhammar G, Mohn WW (2002) Bacterial growth and biofilm production on pyrene. FEMS Microbiol Ecol 40:21–27CrossRefPubMedGoogle Scholar
  10. 10.
    Wick LY, De Munain AR, Springael D, Harms H (2002) Responses of Mycobacterium sp. LB501T to the low bioavailability of solid anthracene. Appl Microbiol Biotechnol 58:378–385CrossRefPubMedGoogle Scholar
  11. 11.
    Rodrigues AC, Brito AG, Wuertz S, Melo LF (2005) Fluorene and phenanthrene uptake by Pseudomonas putida ATCC 17514: kinetics and physiological aspects. Biotechnol Bioeng 90:281–289CrossRefPubMedGoogle Scholar
  12. 12.
    Macedo AJ, Kuhlicke U, Neu TR, Timmis KN, Abraham WR (2005) Three stages of a biofilm community developing at the liquid-liquid interface between polychlorinated biphenyls and water. Appl Environ Microbiol 71:7301–7309CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wouters K, Maes E, Spitz JA, Roeffaers MBJ, Wattiau P, Hofkens J, Springael DA (2010) A non-invasive fluorescent staining procedure allows confocal laser scanning microscopy based imaging of Mycobacterium in multispecies biofilms colonizing and degrading polycyclic aromatic hydrocarbons. J Microbiol Methods 83:317–325CrossRefPubMedGoogle Scholar
  14. 14.
    Manilla-Perez E, Reers C, Baumgart M, Hetzler S, Reichelt R, Malkus U, Kalscheuer R, Waltermann M, Steinbuchel A (2010) Analysis of lipid export in hydrocarbonoclastic bacteria of the Genus Alcanivorax: identification of lipid export-negative mutants of Alcanivorax borkumensis SK2 and Alcanivorax jadensis T9. J Bacteriol 192:643–656CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Vaysse PJ, Sivadon P, Goulas P, Grimaud R (2011) Cells dispersed from Marinobacter hydrocarbonoclasticus SP17 biofilm exhibit a specific protein profile associated with a higher ability to reinitiate biofilm development at the hexadecane-water interface. Environ Microbiol 13:737–746CrossRefPubMedGoogle Scholar
  16. 16.
    Kalscheuer R, Stöveken T, Malkus U, Reichelt R, Golyshin PN, Sabirova JS, Ferrer M, Timmis KN, Steinbüchel A (2007) Analysis of storage lipid accumulation in Alcanivorax borkumensis: evidence for alternative triacylglycerol biosynthesis routes in bacteria. J Bacteriol 189(3):918–928CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Graham L, Orenstein JM (2007) Processing tissue and cells for transmission electron microscopy in diagnostic pathology and research. Nat Protoc 2(10):2439–2450CrossRefPubMedGoogle Scholar
  18. 18.
    Gauthier MJ, Lafay B, Christen R, Fernandez L, Acquaviva M, Bonin P, Bertrand JC (1992) Marinobacter hydrocarbonoclasticus gen. nov., sp. nov., a new, extremely halotolerant, hydrocarbon-degrading marine bacterium. Int J Syst Bacteriol 42:568–576CrossRefPubMedGoogle Scholar
  19. 19.
    Hayat MA (2000) Principles and techniques of electron microscopy - biological applications. Cambridge University Press, CambridgeGoogle Scholar
  20. 20.
    Erlandsen SL, Kristich CJ, Dunny GM, Wells CL (2004) High-resolution visualization of the microbial glycocalyx with low-voltage scanning electron microscopy: dependence on cationic dyes. J Histochem Cytochem 52:1427–1435CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Hammerschmidt S, Wolff S, Hocke A, Rosseau S, Müller E, Rohde M (2005) Illustration of pneumococcal polysaccharide capsule during adherence and invasion of epithelial cells. Infect Immun 73(8):4653–4667CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Dykstra MJ, Reuss LE (2003) Biological electron microscopy: theory, techniques, and troubleshooting, 2nd edn. Kluwer Academic/Plenum, New YorkCrossRefGoogle Scholar
  23. 23.
    Bridier A, Dubois-Brissonnet F, Briandet R (2014) Methods for biofilms constituents and turnover, Section 1. Destructive and nondestructive methods. In: Dobretsov S, Thomason JC, Williams DN (eds) Biofouling methods. Wiley, Oxford, pp 139–152Google Scholar
  24. 24.
    Carpentier A, Abreu S, Trichet M, Satiat-Jeunemaitre BJ (2012) Microwaves and tea: new tools to process plant tissue for transmission electron microscopy. J Microsc 247(1):94–105CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Alexis Canette
    • 1
    • 2
  • Priscilla Branchu
    • 1
    • 2
  • Régis Grimaud
    • 3
    Email author
  • Murielle Naïtali
    • 1
    • 2
  1. 1.INRAJouy-en-JosasFrance
  2. 2.AgroParisTech, UMR MicalisMassyFrance
  3. 3.Université de Pau et des Pays de l’Adour, Equipe Environnement et MicrobiologiePau CedexFrance

Personalised recommendations