Skip to main content

Primers for dsr Genes and Most Probable Number Method for Detection of Sulfate-Reducing Bacteria in Oil Reservoirs

  • Protocol
  • First Online:

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Sulfate-reducing bacteria (SRB) cause souring (the reduction of sulfate to sulfide) and associated corrosion in oil and gas fields. SRB monitoring involves the use of most probable number (MPN) methods in which a sample (1 ml) is subjected to serial dilution in glass vials with 9 ml of anaerobic medium, containing lactate and sulfate. This assay can be conducted on-site by field personnel and is routinely used to determine, for instance, the efficacy of a biocide application. In the laboratory, MPNs are best determined by using microtiter plates, which are incubated in an anaerobic hood. Because the dsrAB genes for dissimilatory sulfite reductase, which catalyzes the final step in the sulfate reduction pathway, are highly conserved, conserved primers have been designed to amplify the dsr genes by PCR. These primers (DSRp2060F and DSR4R) are able to generate mixed PCR products reflecting the diversity and/or numbers of SRB in environmental samples. Although routinely used for research purposes, these methods are not yet used widely in the oil and gas industry to assess the presence of SRB and the success of mitigation measures.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Youssef N, Elshahed MS, McInerney MJ (2009) Microbial processes in oil fields: culprits, problems, and opportunities. Adv Appl Microbiol 66:141–251

    Article  CAS  PubMed  Google Scholar 

  2. Sunde E, Torsvik T (2005) Microbial control of hydrogen sulfide production in oil reservoirs. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM, Washington, DC, pp 201–213

    Chapter  Google Scholar 

  3. Vance I, Thrasher DR (2005) Reservoir souring: mechanisms and prevention. In: Ollivier B, Magot M (eds) Petroleum microbiology. ASM, Washington, DC

    Google Scholar 

  4. Voordouw G (2011) Production-related petroleum microbiology: progress and prospects. Curr Opin Biotechnol 22:1–5

    Article  Google Scholar 

  5. Gittel A, Sorensen KB, Skovhus TL, Ingvorsen K, Schramm A (2009) Prokaryotic community structure and activity of sulfate reducers in production water from high-temperature oil reservoirs with and without nitrate treatment. Appl Environ Microbiol 75:7086–7096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. De Man JC (1977) MPN tables for more than one test. Eur J Appl Microbiol 4:307–316

    Article  Google Scholar 

  7. Vester F, Ingvorsen K (1998) Improved most-probable-number method to detect sulfate-reducing bacteria with natural media and a radiotracer. Appl Environ Microbiol 64:1700–1707

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tanner RS (1989) Monitoring sulfate-reducing bacteria: comparison of enumeration media. J Microbiol Methods 10:83–90

    Article  Google Scholar 

  9. Karkhoff-Schweizer RR, Huber PW, Voordouw G (1995) Conservation of the genes for dissimilatory sulfite reductase from Desulfovibrio vulgaris and Archaeoglobus fulgidus allows their detection by PCR. Appl Environ Microbiol 61:290–296

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Wagner M, Roger AJ, Flax JL, Brusseau GA, Stahl DA (1998) Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pérez-Jiménez JR, Young LY, Kerkhof LJ (2001) Molecular characterization of sulfate-reducing bacteria in anaerobic hydrocarbon-degrading consortia and pure cultures using the dissimilatory sulfite reductase (dsrAB) genes. FEMS Microbiol Ecol 35:145–150

    Article  PubMed  Google Scholar 

  12. Geets J, Borremans B, Diels L, Springael D, Vangronsveld J, van der Lelie D, Vanbroekhoven K (2006) DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J Microbiol Methods 66:194–205

    Article  CAS  PubMed  Google Scholar 

  13. Agrawal A, Lai B (2009) Rapid detection and quantification of bisulfite reductase genes in oil field samples using real time-PCR. FEMS Microbiol Ecol 69:301–312

    Article  CAS  PubMed  Google Scholar 

  14. Miletto M, Bodelier PL, Laanbroek HJ (2007) Improved PCR-DGGE for high resolution diversity screening of complex sulfate-reducing prokaryotic communities in soils and sediments. J Microbiol Methods 70:103–111

    Article  CAS  PubMed  Google Scholar 

  15. Foti M, Sorokin DY, Lomans B, Mussman M, Zacharova EE, Pimenov NV, Kuenen JG, Muyzer G (2007) Diversity, activity, and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Appl Environ Microbiol 73:2093–2100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Andrade LL, Leite DC, Ferreira EM, Ferreira LQ, Paula GR, Maguire MJ, Hubert CR, Peixoto RS, Domingues RM, Rosado AS (2012) Microbial diversity and anaerobic hydrocarbon degradation potential in an oil-contaminated mangrove sediment. BMC Microbiol 12:186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Varon-Lopez M, Dias AC, Fasanella CC, Durrer A, Melo IS, Kuramae EE, Andreote FD (2014) Sulphur-oxidizing and sulphate-reducing communities in Brazilian mangrove sediments. Environ Microbiol 16:845–855

    Article  CAS  PubMed  Google Scholar 

  18. Liu H, Tan S, Sheng Z, Liu Y, Yu T (2014) Bacterial community structure and activity of sulfate-reducing bacteria in a membrane aerated biofilm analyzed by microsensor and molecular techniques. Biotechnol Bioeng 111:2155–2162

    Article  CAS  PubMed  Google Scholar 

  19. Priha O, Nyyssönen M, Bomberg M, Laitila A, Simell J, Kapanen A, Juvonen R (2013) Application of denaturing high-performance liquid chromatography for monitoring sulfate-reducing bacteria in oil fields. Appl Environ Microbiol 79:5186–5196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Callbeck CM, Dong X, Chatterjee I, Agrawal A, Caffrey SM, Sensen C, Voordouw G (2011) Microbial community succession in a bioreactor modeling a souring low temperature oil reservoir subjected to nitrate injection. Appl Microbiol Biotech 91:799–810

    Article  CAS  Google Scholar 

  21. Callbeck C, Agrawal A, Voordouw G (2013) Acetate production from oil under sulfate-reducing conditions in bioreactors injected with sulfate and nitrate. Appl Environ Microbiol 79:5059–5506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Voordouw G, Grigoryan AA, Lambo A, Lin S, Park HS, Jack TR, Coombe D, Clay B, Zhang F, Ertmoed R, Miner K, Arensdorf JJ (2009) Sulfide remediation by pulsed injection of nitrate into a low temperature Canadian heavy oil reservoir. Environ Sci Technol 43:9512–9518

    Article  CAS  PubMed  Google Scholar 

  23. Postgate JR (1963) Versatile medium for the enumeration of sulfate-reducing bacteria. Appl Microbiol 11:265–267

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Postgate JR (1984) The sulphate reducing bacteria. Cambridge University Press, Cambridge, p 26

    Google Scholar 

Download references

Acknowledgments

This work was supported through a Natural Sciences and Engineering Research Council (NSERC) Industrial Research Chair Award to GV, which is also being supported by Baker Hughes, BP, Computer Modelling Group Limited, ConocoPhillips Company, Dow Microbial Control, Enbridge, Enerplus Corporation, Intertek, Oil Search Limited, Shell Global Solutions International BV, Suncor Energy Inc., and Yara Norge AS, as well as by Alberta Innovates – Energy and Environment Solutions (AIEES). Analytical tools and expertise developed through the Hydrocarbon Metagenomics Project funded by Genome Canada and administered through Genome Alberta enabled characterization of community compositions. We thank Fiona Xue for supplying the SRB enrichment to generate the data for Figure 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Shen, Y., Voordouw, G. (2015). Primers for dsr Genes and Most Probable Number Method for Detection of Sulfate-Reducing Bacteria in Oil Reservoirs. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_72

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_72

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52776-4

  • Online ISBN: 978-3-662-52778-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics