Skip to main content

Single Bacteria Studies Using Microfluidics

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

The importance of individual heterogeneity within a genetically identical population has become well recognized. However, single bacteria studies have been beset by a number of challenges ranging from single-cell handling to detection. Most of these stem from bacteria’s microscale dimensions and the complexity of their natural environment. In recent years, microfluidics has emerged as a powerful tool to manipulate single cells and their immediate microenvironments and is well suited to address these challenges. The protocols below will describe the creation of microfluidic devices for monolayer cell culture and long-term tracking of morphological dynamics from individual bacteria under precisely delivered perturbations. Step-by-step procedures for on-chip assays and morphological-based image analysis are described in detail, and these approaches enable fast quantification of bacteria growth and morphological changes under a broad range of conditions within a single experiment. Importantly, these methods do not require labeling of cells, thereby offering unique advantages in the investigation of naturally occurring microbes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gefen O, Gabay C, Mumcuoglu M, Engel G, Balaban NQ (2008) Single-cell protein induction dynamics reveals a period of vulnerability to antibiotics in persister bacteria. Proc Natl Acad Sci U S A 105:6145–6149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lidstrom ME, Konopka MC (2010) The role of physiological heterogeneity in microbial population behavior. Nat Chem Biol 6:705–712

    Article  CAS  PubMed  Google Scholar 

  3. Julou T, Mora T, Guillon L, Croquette V, Schalk IJ, Bensimon D et al (2013) Cell-cell contacts confine public goods diffusion inside Pseudomonas aeruginosa clonal microcolonies. Proc Natl Acad Sci U S A 110:12577–12582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wagner M, Nielsen PH, Loy A, Nielsen JL, Daims H (2006) Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays. Curr Opin Biotechnol 17:83–91

    Article  CAS  PubMed  Google Scholar 

  5. Caruso G, Zaccone R, Crisafi E (2000) Use of the indirect immunofluorescence method for detection and enumeration of Escherichia coli in seawater samples. Lett Appl Microbiol 31:274–278

    Article  CAS  PubMed  Google Scholar 

  6. Okumus B, Yildiz S, Toprak E (2014) Fluidic and microfluidic tools for quantitative systems biology. Curr Opin Biotechnol 25:30–38

    Article  CAS  PubMed  Google Scholar 

  7. Grunberger A, Wiechert W, Kohlheyer D (2014) Single-cell microfluidics: opportunity for bioprocess development. Curr Opin Biotechnol 29:15–23

    Article  PubMed  Google Scholar 

  8. Yin HB, Marshall D (2012) Microfluidics for single cell analysis. Curr Opin Biotechnol 23:110–119

    Article  CAS  PubMed  Google Scholar 

  9. Blainey PC (2013) The future is now: single-cell genomics of bacteria and archaea. Fems Microbiol Rev 37:407–427

    Article  CAS  PubMed  Google Scholar 

  10. Wright E, Neethirajan S, Warriner K, Retterer S, Srijanto B (2014) Single cell swimming dynamics of Listeria monocytogenes using a nanoporous microfluidic platform. Lab Chip 14:938–946

    Article  CAS  PubMed  Google Scholar 

  11. Jeong HH, Lee SH, Kim JM, Kim HE, Kim YG, Yoo JY et al (2010) Microfluidic monitoring of Pseudomonas aeruginosa chemotaxis under the continuous chemical gradient. Biosens Bioelectron 26:351–356

    Article  CAS  PubMed  Google Scholar 

  12. Weibel DB, DiLuzio WR, Whitesides GM (2007) Microfabrication meets microbiology. Nat Rev Microbiol 5:209–218

    Article  CAS  PubMed  Google Scholar 

  13. Denervaud N, Becker J, Delgado-Gonzalo R, Damay P, Rajkumar AS, Unser M et al (2013) A chemostat array enables the spatio-temporal analysis of the yeast proteome. Proc Natl Acad Sci U S A 110:15842–15847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boedicker JQ, Li L, Kline TR, Ismagilov RF (2008) Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8:1265–1272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang BL, Ghaderi A, Zhou H, Agresti J, Weitz DA, Fink GR et al (2014) Microfluidic high-throughput culturing of single cells for selection based on extracellular metabolite production or consumption. Nat Biotechnol 32:473–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Marcy Y, Ouverney C, Bik EM, Losekann T, Ivanova N, Martin HG et al (2007) Dissecting biological “dark matter” with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc Natl Acad Sci U S A 104:11889–11894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Leung K, Zahn H, Leaver T, Konwar KM, Hanson NW, Page AP et al (2012) A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proc Natl Acad Sci U S A 109:7665–7670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hol FJH, Dekker C (2014) Zooming in to see the bigger picture: microfluidic and nanofabrication tools to study bacteria. Science (New York, NY) 346:1251821

    Google Scholar 

  19. Santi I, Dhar N, Bousbaine D, Wakamoto Y, McKinney JD (2013) Single-cell dynamics of the chromosome replication and cell division cycles in mycobacteria. Nat Commun 4:10

    Google Scholar 

  20. Wakamoto Y, Dhar N, Chait R, Schneider K, Signorino-Gelo F, Leibler S et al (2013) Dynamic persistence of antibiotic-stressed mycobacteria. Science 339:91–95

    Article  CAS  PubMed  Google Scholar 

  21. Groisman A, Lobo C, Cho HJ, Campbell JK, Dufour YS, Stevens AM et al (2005) A microfluidic chemostat for experiments with bacterial and yeast cells. Nat Methods 2:685–689

    Article  CAS  PubMed  Google Scholar 

  22. Choi J, Jung YG, Kim J, Kim S, Jung Y, Na H et al (2013) Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system. Lab Chip 13:280–287

    Article  CAS  PubMed  Google Scholar 

  23. Balagadde FK, You LC, Hansen CL, Arnold FH, Quake SR (2005) Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309:137–140

    Article  CAS  PubMed  Google Scholar 

  24. Wang P, Robert L, Pelletier J, Dang WL, Taddei F, Wright A et al (2010) Robust growth of Escherichia coli. Curr Biol 20:1099–1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S (2004) Bacterial persistence as a phenotypic switch. Science 305:1622–1625

    Article  CAS  PubMed  Google Scholar 

  26. Dai J, Yoon SH, Sim HY, Yang YS, Oh TK, Kim JF et al (2013) Charting microbial phenotypes in multiplex nanoliter batch bioreactors. Anal Chem 85:5892–5899

    Article  CAS  PubMed  Google Scholar 

  27. Moffitt JR, Lee JB, Cluzel P (2012) The single-cell chemostat: an agarose-based, microfluidic device for high-throughput, single-cell studies of bacteria and bacterial communities. Lab Chip 12:1487–1494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Long Z, Nugent E, Javer A, Cicuta P, Sclavi B, Lagomarsino MC et al (2013) Microfluidic chemostat for measuring single cell dynamics in bacteria. Lab Chip 13:947–954

    Article  CAS  PubMed  Google Scholar 

  29. Park J, Wu JZ, Polymenis M, Han A (2013) Microchemostat array with small-volume fraction replenishment for steady-state microbial culture. Lab Chip 13:4217–4224

    Article  CAS  PubMed  Google Scholar 

  30. Li B, Qiu Y, Glidle A, Cooper J, Shi HC, Yin HB (2014) Single cell growth rate and morphological dynamics revealing an “opportunistic” persistence. Analyst 139:3305–3313

    Article  CAS  PubMed  Google Scholar 

  31. Li B, Qiu Y, Glidle A, McIlvenna D, Luo Q, Cooper J et al (2014) Gradient microfluidics enables rapid bacterial growth inhibition testing. Anal Chem 86:3131–3137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

We thank the support from EPSRC (EP/H04986X/1 and EP/J009121/1) and from Tsinghua University Initiative Scientific Research Program (No.20121087922). We gratefully acknowledge the technical team of the James Watt Nanofabrication Centre (JWNC) at University of Glasgow for the support in fabricating the devices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huabing Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Song, Y., Li, B., Qiu, Y., Yin, H. (2015). Single Bacteria Studies Using Microfluidics. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_70

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_70

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-45178-6

  • Online ISBN: 978-3-662-45179-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics