Systems Biology Tools for Methylotrophs

  • Marina G. Kalyuzhnaya
  • Song Yang
  • David A. C. Beck
  • Ludmila ChistoserdovaEmail author
Part of the Springer Protocols Handbooks book series (SPH)


The methylotrophy field is currently experiencing a renaissance. Innovative cultivation techniques are resulting in discovery of novel types of methylotrophs, the growing genomic databases are providing blueprints for metabolic reconstruction in traditional as well as newly discovered methylotrophs, and the concepts and dogmas formed during the pre-omics era are changing, sometimes dramatically. The emerging approach in characterizing methylotrophs, as well as other metabolic specialists, is a combination of systems biology approaches, with availability of the genomic sequence being a prerequisite. We here describe a series of omics approaches to characterizing methylotrophs, which, in their combination, provide comprehensive outlook at how methylotrophy metabolism is enabled in specific methylotroph guilds and how it is regulated.


Community dynamics Genomics Metabolic modeling Metabolomics Methanotroph Methylotroph Proteomics Transcriptomics 



This material is based upon the work supported by the US Department of Energy, Office of Science, Office of Biological and Environmental Research under Award Number DE-SC-0010556, and the Joint Fund of National Natural Science Foundation of China (Grant Number U1462109).


  1. 1.
    Chistoserdova L, Lidstrom ME (2013) Aerobic methylotrophic prokaryotes. In: Rosenberg E, DeLong EF, Thompson F, Lory S, Stackebrandt E (eds) The prokaryotes, 4th edn. Springer, Berlin, pp 267–285CrossRefGoogle Scholar
  2. 2.
    Söhngen NL (1906) Űber bacteria welche methan als kőhlenstorfnarung und energie-quelle gebrauchen. Zentr Bakt Parazitenk 15:513–517Google Scholar
  3. 3.
    Anthony C (1982) Biochemistry of methylotrophs. Academic, LondonGoogle Scholar
  4. 4.
    Ettwig KF, Butler MK, Le Paslier D et al (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464:543–548CrossRefPubMedGoogle Scholar
  5. 5.
    Haroon MF, Hu S, Shi Y et al (2013) Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature 500:567–570, Erratum in: Nature (2013) 501:578CrossRefPubMedGoogle Scholar
  6. 6.
    Knittel K, Boetius A (2009) Anaerobic oxidation of methane: progress with an unknown process. Annu Rev Microbiol 63:311–334CrossRefPubMedGoogle Scholar
  7. 7.
    Beal EJ, House CH, Orphan VJ (2009) Manganese- and iron-dependent marine methane oxidation. Science 325:184–187CrossRefPubMedGoogle Scholar
  8. 8.
    Marx C, Bringel F, Chistoserdova L et al (2012) Complete genome sequences of six strains of the genus Methylobacterium. J Bacteriol 194:4746–4748CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Beck DAC, McTaggart TL, Setboonsarng U et al (2014) The expanded diversity of Methylophilaceae from Lake Washington through cultivation and genomic sequencing of novel ecotypes. PLoS One 9:e102458CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Vuilleumier S, Chistoserdova L, Lee MC (2009) Methylobacterium genome sequences: a reference blueprint to investigate microbial metabolism of C1 compounds from natural and industrial sources. PLoS One 4:e5584CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Wajid B, Serpedin E (2012) Review of general algorithmic features for genome assemblers for next generation sequencers. Genomics Proteomics Bioinformatics 10:58–73CrossRefPubMedGoogle Scholar
  12. 12.
    Wajid B, Serpedin E (2014) Do it yourself guide to genome assembly. Brief Funct Genomics pii:elu042Google Scholar
  13. 13.
    Radajewski S, Ineson P, Parekh NR, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649CrossRefPubMedGoogle Scholar
  14. 14.
    Neufeld JD, Vohra J, Dumont MG et al (2007) DNA stable-isotope probing. Nat Protoc 2:860–866CrossRefPubMedGoogle Scholar
  15. 15.
    Neufeld JD, Wagner M, Murrell JC (2007) Who eats what, where and when? Isotope-labelling experiments are coming of age. ISME J 1:103–110CrossRefPubMedGoogle Scholar
  16. 16.
    Chen Y, Murrell JC (2010) When metagenomics meets stable-isotope probing: progress and perspectives. Trends Microbiol 18:157–163CrossRefPubMedGoogle Scholar
  17. 17.
    Kalyuzhnaya MG, Lapidus A, Ivanova N et al (2008) High-resolution metagenomics targets major functional types in complex microbial communities. Nat Biotechnol 26:1029–1034CrossRefPubMedGoogle Scholar
  18. 18.
    Beck DAC, Kalyuzhnaya MG, Malfatti S et al (2013) A metagenomic insight into freshwater methane-utilizing communities and evidence for cooperation between the Methylococcaceae and the Methylophilaceae. PeerJ 1:e23CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kalyuhznaya MG, Martens-Habbena W, Wang T et al (2009) Methylophilaceae link methanol oxidation to denitrification in freshwater lake sediment as suggested by stable isotope probing and pure culture analysis. Environ Microbiol Rep 1:385–392CrossRefPubMedGoogle Scholar
  20. 20.
    Nercessian O, Noyes E, Kalyuzhnaya MG, Lidstrom ME, Chistoserdova L (2005) Bacterial populations active in metabolism of C1 compounds in the sediment of Lake Washington, a freshwater lake. Appl Environ Microbiol 71:6885–6899CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Luo C, Tsementzi D, Kyrpides N, Read T, Konstantinidis KT (2012) Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same microbial community DNA sample. PLoS One 7:e30087CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Markowitz VM, Chen IM, Palaniappan K et al (2014) IMG 4 version of the integrated microbial genomes comparative analysis system. Nucleic Acids Res 42:D560–D567CrossRefPubMedGoogle Scholar
  23. 23.
    Kunin V, Hugenholtz P (2010) PyroTagger: a fast, accurate pipeline for analysis of rRNA amplicon pyrosequence data. Open J 1:1–8Google Scholar
  24. 24.
    Caporaso JG, Lauber CL, Walters WA et al (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108(Suppl 1):4516–4522CrossRefPubMedGoogle Scholar
  25. 25.
    Kuczynski J, Stombaugh J, Walters WA, Gonzalez A, Caporaso JG, Knight R (2012) Using QIIME to analyze 16S rRNA gene sequences from microbial communities. Curr Protoc Microbiol Chapter 1: Unit 1E 5Google Scholar
  26. 26.
    Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Mitra S, Stark M, Huson DH (2011) Analysis of 16S rRNA environmental sequences using MEGAN. BMC Genomics 12(Suppl 3):S17CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kumar R, Eipers P, Little RB et al (2014) Getting started with microbiome analysis: sample acquisition to bioinformatics. Curr Protoc Hum Genet 82:181811–181829, Haines JL et al (eds)Google Scholar
  29. 29.
    Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10:996–998CrossRefPubMedGoogle Scholar
  30. 30.
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Haas BJ, Gevers D, Earl AM (2011) Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res 21:494–504CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Oksanen J, Blanchet FG, Kindt R (2013) vegan: Community Ecology Package Version 2.0-10Google Scholar
  34. 34.
    Chistoserdova L (2011) Modularity of methylotrophy, revisited. Environ Microbiol 13:2603–2622CrossRefPubMedGoogle Scholar
  35. 35.
    Dumont MG, Murrell JC (2005) Community-level analysis: key genes of aerobic methane oxidation. Methods Enzymol 397:413–427CrossRefPubMedGoogle Scholar
  36. 36.
    Dumont MG (2014) Primers: functional marker genes for methylotrophs and methanotrophs. In: McGenity TJ et al (eds) Hydrocarbon and lipid microbiology protocols, Springer protocols handbooks. Springer, Berlin HeidelbergGoogle Scholar
  37. 37.
    Sy A, Giraud E, Jourand P et al (2001) Methylotrophic Methylobacterium bacteria nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Homer N, Merriman B, Nelson SF (2009) BFAST: an alignment tool for large scale genome resequencing. PLoS One 4:e7767CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools.1000 genome project data processing subgroup. Bioinformatics 25:2078–2079CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Thorvaldsdóttir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192CrossRefPubMedGoogle Scholar
  43. 43.
    Oshkin I, Beck DAC, Lamb AE et al (2014) Methane fed microcosms show differential community dynamics and pinpoint specific taxa involved in communal response. ISME J doi:10.1038/ismej.2014.203
  44. 44.
    Hernandez ME, Beck DAC, Lidstrom ME, Chistoserdova L (2015) Oxygen availability is a major factor in determining the composition of microbial communities involved in methane oxidation. PeerJ 3:e801CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Kerckhof FM, Courtens ENP, Geirnaert A et al (2014) Optimized cryopreservation of mixed microbial communities for conserved functionality and diversity. PLoS One 9:e99517CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Dedysh SN, Dunfield PF (2014) Cultivation of methanotrophs. In: McGenity TJ et al (eds) Hydrocarbon and lipid microbiology protocols, Springer protocols handbooks. Springer, Berlin HeidelbergGoogle Scholar
  47. 47.
    Kelly DP, Ardley JK, Wood AP (2014) Cultivation of methylotrophs. In: McGenity TJ et al (eds) Hydrocarbon and lipid microbiology protocols, Springer protocols handbooks. Springer, Berlin HeidelbergGoogle Scholar
  48. 48.
    Kuivila KM, Murray JW, Devol AH, Lidstrom ME, Reimers CE (1988) Methane cycling in the sediments of Lake Washington. Limnol Oceanogr 33:571–581CrossRefGoogle Scholar
  49. 49.
    Auman AJ, Stolyar S, Costello AM, Lidstrom ME (2000) Molecular characterization of methanotrophic isolates from freshwater lake sediment. Appl Environ Microbiol 66:5259–5266CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Reim A, Luke C, Krause S, Pratscher J, Frenzel P (2012) One millimetre makes the difference: high-resolution analysis of methane-oxidizing bacteria and their specific activity at the oxic–anoxic interface in a flooded paddy soil. ISME J 6:2128–2139CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Okubo Y, Skovran E, Guo X, Sivam D, Lidstrom ME (2007) Implementation of microarrays for Methylobacterium extorquens AM1. OMICS 11:325–340CrossRefPubMedGoogle Scholar
  52. 52.
    Ojala DS, Beck DA, Kalyuzhnaya MG (2011) Genetic systems for moderately halo(alkali)philic bacteria of the genus Methylomicrobium. Methods Enzymol 495:99–118CrossRefPubMedGoogle Scholar
  53. 53.
    Matsen JB, Yang S, Stein LY, Beck D, Kalyuzhnaya MG (2013) Global molecular analyses of methane metabolism in methanotrophic Alphaproteobacterium, Methylosinus trichosporium OB3b. Part I: transcriptomic study. Front Microbiol 4:40CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Anders S, Pyl PT, Huber W (2014) HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics (Oxford, England). doi: 10.1093/bioinformatics/btu638
  55. 55.
    Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods 5:621–628CrossRefPubMedGoogle Scholar
  56. 56.
    Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100:9440–9445CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Anders S, McCarthy DJ, Chen Y et al (2013) Count-based differential expression analysis of RNA sequencing data using R and Bioconductor. Nat Protoc 8:1765–1786CrossRefPubMedGoogle Scholar
  59. 59.
    Gourion B, Rossignol M, Vorholt JA (2006) A proteomic study of Methylobacterium extorquens reveals a response regulator essential for epiphytic growth. Proc Natl Acad Sci U S A 103:13186–13191CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Bosch G, Skovran E, Xia Q et al (2008) Comprehensive proteomics of Methylobacterium extorquens AM1 metabolism under single carbon and nonmethylotrophic conditions. Proteomics 8:3494–3505CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Kappler U, Nouwens AS (2013) Metabolic adaptation and trophic strategies of soil bacteria-C1- metabolism and sulfur chemolithotrophy in Starkeya novella. Front Microbiol 4:304CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Müller JE, Litsanov B, Bortfeld-Miller M et al (2014) Proteomic analysis of the thermophilic methylotroph Bacillus methanolicus MGA3. Proteomics 14:725–737CrossRefPubMedGoogle Scholar
  63. 63.
    Bosch G, Wang T, Latypova E, Kalyuzhnaya MG, Hackett M, Chistoserdova L (2009) Insights into the physiology of Methylotenera mobilis as revealed by metagenome-based shotgun proteomic analysis. Microbiology 155:1103–1110CrossRefPubMedGoogle Scholar
  64. 64.
    Hendrickson EL, Beck DA, Wang T, Lidstrom ME, Hackett M, Chistoserdova L (2010) Expressed genome of Methylobacillus flagellatus as defined through comprehensive proteomics and new insights into methylotrophy. J Bacteriol 192:4859–4867CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Beck DA, Hendrickson EL, Vorobev A et al (2011) An integrated proteomics/transcriptomics approach points to oxygen as the main electron sink for methanol metabolism in Methylotenera mobilis. J Bacteriol 193:4758–4765CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Kao WC, Chen YR, Yi EC et al (2004) Quantitative proteomic analysis of metabolic regulation by copper ions in Methylococcus capsulatus (Bath). J Biol Chem 279:51554–51560CrossRefPubMedGoogle Scholar
  67. 67.
    Deutsch EW, Shteynberg D, Lam H et al (2010) Trans-Proteomic Pipeline supports and improves analysis of electron transfer dissociation data sets. Proteomics 10:1190–1195CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Kessner D, Chambers M, Burke R, Agus D, Mallick P (2008) ProteoWizard: open source software for rapid proteomics tools development. Bioinformatics 24:2534–2536CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Eng JK, Jahan TA, Hoopmann MR (2013) Comet: an open-source MS/MS sequence database search tool. Proteomics 13:22–24CrossRefPubMedGoogle Scholar
  70. 70.
    Keller A, Nesvizhskii AI, Kolker E, Aebersold R (2002) Empirical statistical model to estimate the accuracy of peptide identifications made by MS/MS and database search. Anal Chem 74:5383–5392CrossRefPubMedGoogle Scholar
  71. 71.
    Nesvizhskii AI, Keller A, Kolker E, Aebersold R (2003) A statistical model for identifying proteins by tandem mass spectrometry. Anal Chem 75:4646–4658CrossRefPubMedGoogle Scholar
  72. 72.
    VerBerkmoes NC, Denef VJ, Hettich RL, Banfield JF (2009) Systems biology: functional analysis of natural microbial consortia using community proteomics. Nat Rev Microbiol 7:196–205CrossRefPubMedGoogle Scholar
  73. 73.
    Delmotte N, Knief C, Chaffron S (2009) Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci U S A 106:16428–16433CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Sowell SM, Abraham PE, Shah M (2011) Environmental proteomics of microbial plankton in a highly productive coastal upwelling system. ISME J 5:856–865CrossRefPubMedGoogle Scholar
  75. 75.
    Yang S, Matsen JB, Konopka M et al (2013) Global molecular analyses of methane metabolism in methanotrophic alphaproteobacterium, Methylosinus trichosporium OB3b, Part II: metabolomics and 13C-labeling study. Front Microbiol 4:70PubMedPubMedCentralGoogle Scholar
  76. 76.
    Yang S, Sadilek M, Synovec RE, Lidstrom ME (2009) Liquid chromatography-tandem quadrupole mass spectrometry and comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry measurement of targeted metabolites of Methylobacterium extorquens AM1 grown on two different carbon sources. J Chromatogr A 1216:3280–3289CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Kalyuzhnaya MG, Yang S, Rozova ON et al (2013) Highly efficient methane biocatalysis revealed in a methanotrophic bacterium. Nat Commun 4:2785CrossRefPubMedGoogle Scholar
  78. 78.
    Yang S, Nadeau JS, Humston-Fulmer EM, Lidstrom ME, Synovec RE (2012) Gas chromatography-mass spectrometry with chemometric analysis for quantitative 13C Isotope determination in bacteria: towards a platform for high-throughput dynamic flux analysis. J Chromatogr A 1240:156–164CrossRefPubMedGoogle Scholar
  79. 79.
    Yang S, Sadilek M, Lidstrom ME (2010) Streamlined pentafluorophenylpropyl column liquid chromatography-tandem quadrupole mass spectrometry and global 13C-labeled internal standards improve performance for quantitative metabolomics in bacteria. J Chromatogr A 1217:7401–7410CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Yang S, Synovec RE, Kalyuzhnaya MG, Lidstrom ME (2011) Development of a solid phase extraction protocol coupled with liquid chromatography mass spectrometry to analyze central carbon metabolites in lake sediment microcosms. J Sep Sci 34:3597–3605CrossRefPubMedGoogle Scholar
  81. 81.
    Yang S, Hoggard JC, Lidstrom ME, Synovec RE (2013) Comprehensive discovery of 13C labeled metabolites in the bacteria Methylobacterium extorquens AM1 using gas chromatography – mass spectrometry. J Chromatogr A 1317:175–185CrossRefPubMedGoogle Scholar
  82. 82.
    Okubo Y, Yang S, Chistoserdova L, Lidstrom ME (2010) Alternative route for glyoxylate consumption during growth on two-carbon compounds by Methylobacterium extorquens AM1. J Bacteriol 192:1813–1823CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Van Dien SJ, Lidstrom ME (2002) Stoichiometric model for evaluating the metabolic capabilities of the facultative methylotroph Methylobacterium extorquens AM1, with application to reconstruction of C(3) and C(4) metabolism. Biotechnol Bioeng 78:296–312CrossRefPubMedGoogle Scholar
  84. 84.
    Peyraud R, Schneider K, Kiefer P, Massou S, Vorholt J, Portais JP (2011) Genome-scale reconstruction and system level investigation of the metabolic network of Methylobacterium extorquens AM1. BMC Syst Biol 5:89CrossRefGoogle Scholar
  85. 85.
    Santos F, Boele J, Teusink B (2011) A practical guide to genome-scale metabolic models and their analysis. Methods Enzymol 500:509–532CrossRefPubMedGoogle Scholar
  86. 86.
    Karr JP, Sanghvi JC, Macklin DN et al (2012) A whole-cell computational model predicts phenotype from genotype. Cell 150:389–401CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Marina G. Kalyuzhnaya
    • 1
  • Song Yang
    • 2
  • David A. C. Beck
    • 3
    • 4
  • Ludmila Chistoserdova
    • 3
    Email author
  1. 1.Biology DepartmentSan Diego State UniversitySan DiegoUSA
  2. 2.School of Life SciencesQingdao Agricultural University and Qingdao International Center on Microbes Utilizing BiogasShandong ProvincePeople’s Republic of China
  3. 3.Department of Chemical EngineeringUniversity of WashingtonSeattleUSA
  4. 4.eScience Institute, University of WashingtonSeattleUSA

Personalised recommendations