Skip to main content

Methods for Recombinant Rhamnolipid Production

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Rhamnolipids are glycolipidic microbial biosurfactants with potential, e.g., as emulsifier or foaming agents in industrial applications. Currently rhamnolipids are produced with pathogenic wild-type strains such as Pseudomonas aeruginosa during growth on hydrophobic substrates (e.g., plant oils). The combination of complex regulation of secondary metabolites in wild-type strains like the quorum sensing system in P. aeruginosa, costly substrates, and low production rates is hindering the market success of rhamnolipids. Challenges include sophisticated fermentation, time-consuming production, and laborious and expensive downstream processing. Recombinant rhamnolipid production is capable of overcoming all these downsides.

Here we present a protocol for the heterologous production of rhamnolipids. This method offers advantages such as (1) easy expression regulation by IPTG induction, (2) glucose as carbon source, and (3) a nonpathogenic host. The most prominent genes responsible for rhamnolipid synthesis, emanating from Pseudomonas or Burkholderia species, are already identified. We describe a method for cloning and expressing the genes rhlA and rhlB from P. aeruginosa in vector pVLT33 allowing for the production of mono-rhamnolipids. Furthermore, we present cultivation methods for the constructed strain, fermentation procedures for upscaled production of the product of interest, qualitative as well as quantitative analytical methods, and finally purification protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lang S, Wullbrandt D (1999) Rhamnose lipids - biosynthesis, microbial production and application potential. Appl Microbiol Biotechnol 51:22–32

    Article  CAS  PubMed  Google Scholar 

  2. Maier RM, Soberon-Chavez G (2000) Pseudomonas aeruginosa rhamnolipids: biosynthesis and potential applications. Appl Microbiol Biotechnol 54:625–633

    Article  CAS  PubMed  Google Scholar 

  3. Vatsa P, Sanchez L, Clement C et al (2010) Rhamnolipid biosurfactants as new players in animal and plant defense against microbes. Int J Mol Sci 11:5096–5109

    Article  Google Scholar 

  4. Stipcevic T, Piljac A, Piljac G (2006) Enhanced healing of full-thickness burn wounds using di-rhamnolipid. Burns 32:24–34

    Article  PubMed  Google Scholar 

  5. Rodrigues L, Banat IM, Teixeira J et al (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57:609–618

    Article  CAS  PubMed  Google Scholar 

  6. Abdel-Mawgoud AM, Lépine F, Déziel E (2010) Rhamnolipids: diversity of structures, microbial origins and roles. Appl Microbiol Biotechnol 86:1323–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Abalos A, Pinazo A, Infante MR et al (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17:1367–1371

    Article  CAS  Google Scholar 

  8. Haba E, Pinazo A, Jauregui O et al (2003) Physicochemical characterization and antimicrobial properties of rhamnolipids produced by Pseudomonas aeruginosa 47 T2 NCBIM 40044. Biotechnol Bioeng 81:316–322

    Article  CAS  PubMed  Google Scholar 

  9. Christova N, Tuleva B, Cohenb R et al (2011) Chemical characterization and physical and biological activities of rhamnolipids produced by Pseudomonas aeruginosa BN10. Z Naturforsch C 66:394–402

    Article  CAS  PubMed  Google Scholar 

  10. Müller MM, Hörmann B, Kugel M et al (2010) Evaluation of rhamnolipid production capacity of Pseudomonas aeruginosa PAO1 in comparison to the rhamnolipid over-producer strains DSM 7108 and DSM 2874. Appl Microbiol Biotechnol 89:585–592

    Article  PubMed  Google Scholar 

  11. Parra JL, Guinea J, Manresa MA et al (1989) Chemical characterization and physicochemical behavior of biosurfactants. J Am Oil Chem Soc 66:141–145

    Article  CAS  Google Scholar 

  12. Häußler S, Nimtz M, Domke T et al (1998) Purification and characterization of a cytotoxic exolipid of Burkholderia pseudomallei. Infect Immun 66:1588–1593

    PubMed  PubMed Central  Google Scholar 

  13. Hörmann B, Müller MM, Syldatk C et al (2010) Rhamnolipid production by Burkholderia plantarii DSM 9509(T). Eur J Lipid Sci Technol 112:674–680

    Article  Google Scholar 

  14. Rezanka T, Siristova L, Sigler K (2011) Rhamnolipid-producing thermophilic bacteria of species Thermus and Meiothermus. Extremophiles 15:697–709

    Article  CAS  PubMed  Google Scholar 

  15. Müller MM, Hörmann B, Syldatk C et al (2010) Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Appl Microbiol Biotechnol 87:167–174

    Article  PubMed  Google Scholar 

  16. Giani C, Wullbrandt D, Rothert R et al (1995) Pseudomonas aeruginosa and its use in a process for the biotechnological preparation of L-rhamnose. US Patent 5,658,793 26 March 1996

    Google Scholar 

  17. Sha R, Jiang L, Meng Q et al (2011) Producing cell-free culture broth of rhamnolipids as a cost-effective fungicide against plant pathogens. J Basic Microbiol 51:1–9

    Article  Google Scholar 

  18. Timmis KN (2002) Pseudomonas putida: a cosmopolitan opportunist par excellence. Environ Microbiol 4:779–781

    Article  PubMed  Google Scholar 

  19. Wittgens A, Tiso T, Arndt TT et al (2011) Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microb Cell Fact 10:80. doi:10.1186/1475-2859-10-80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Abdel-Mawgoud AM, Lepine F, Deziel E (2014) A stereospecific pathway diverts beta-oxidation intermediates to the biosynthesis of rhamnolipid biosurfactants. Chem Biol 21:156–164

    Article  CAS  PubMed  Google Scholar 

  21. Déziel E, Lépine F, Milot S et al (2003) rhlA is required for the production of a novel biosurfactant promoting swarming motility in Pseudomonas aeruginosa: 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs), the precursors of rhamnolipids. Microbiology 149:2005–2013

    Article  PubMed  Google Scholar 

  22. Kim GJ, Lee IY, Choi DK et al (1996) High cell density cultivation of Pseudomonas putida BM01 using glucose. J Microbiol Biotechnol 6:221–224

    CAS  Google Scholar 

  23. Sun Z, Ramsay JA, Guay M et al (2006) Automated feeding strategies for high-cell-density fed-batch cultivation of Pseudomonas putida KT2440. Appl Microbiol Biotechnol 71:423–431

    Article  CAS  PubMed  Google Scholar 

  24. Ochsner UA, Reiser J, Fiechter A et al (1995) Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Appl Environ Microbiol 61:3503–3506

    CAS  PubMed  PubMed Central  Google Scholar 

  25. de Lorenzo V, Eltis L, Kessler B et al (1993) Analysis of Pseudomonas gene products using lacI q/Ptrp-lac plasmids and transposons that confer conditional phenotypes. Gene 123:17–24

    Article  PubMed  Google Scholar 

  26. Honda Y, Sakai H, Hiasa H et al (1991) Functional division and reconstruction of a plasmid replication origin - molecular dissection of the oriV of the broad-host-range plasmid-Rsf1010. Proc Natl Acad Sci U S A 88:179–183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. de Boer HA, Comstock LJ, Vasser M (1983) The tac promoter - a functional hybrid derived from the trp and lac promoters. Proc Natl Acad Sci U S A 80:21–25

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bertani G (1951) Studies on lysogenesis I.: the mode of phage liberation by lysogenic Escherichia coli. J Bacteriol 62:293–300

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  30. Jeude M (2007) Entwicklung und Anwendung einer Fed-batch-Betriebsweise mit Nährstofffreisetzungssystemen zur kontrollierten Kultivierung und zum Screening von Mikroorganismen in Schüttelreaktoren. Dissertation, Rheinisch-Westfälisch Technische Hochschule Aachen

    Google Scholar 

  31. Duetz WA, Ruedi L, Hermann R et al (2000) Methods for intense aeration, growth, storage, and replication of bacterial strains in microtiter plates. Appl Environ Microbiol 66:2641–2646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kanehisa Laboratories (1995) KEGG: Kyoto encyclopedia of genes and genomes. http://www.genome.jp/kegg/kegg2.html. Accessed 25 Jun 2014

  33. Nelson KE, Weinel C, Paulsen IT et al (2002) Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol 4:799–808

    Article  CAS  PubMed  Google Scholar 

  34. Ramos-Diáz MA, Ramos JL (1998) Combined physical and genetic map of the Pseudomonas putida KT2440 chromosome. J Bacteriol 180:6352–6363

    PubMed  PubMed Central  Google Scholar 

  35. Choi KH, Kumar A, Schweizer HP (2006) A 10-min method for preparation of highly electrocompetent Pseudomonas aeruginosa cells: application for DNA fragment transfer between chromosomes and plasmid transformation. J Microbiol Methods 64:391–397

    Article  CAS  PubMed  Google Scholar 

  36. Siegmund I, Wagner F (1991) New method for detecting rhamnolipids excreted by Pseudomonas species during growth on mineral agar. Biotechnol Tech 5:265–268

    Article  CAS  Google Scholar 

  37. Chandrasekaran EV, BeMiller JN (1980) Constituent analysis of glycosaminoglycans. In: BeMiller JN, Whistler RL, Shaw DH (eds) Methods in carbohydrate chemistry, 1st edn. Academic, New York

    Google Scholar 

  38. Asmer HJ, Lang S, Wagner F et al (1988) Microbial-production, structure elucidation and bioconversion of sophorose lipids. J Am Oil Chem Soc 65:1460–1466

    Article  CAS  Google Scholar 

  39. Wang Q, Fang X, Bai B et al (2007) Engineering bacteria for production of rhamnolipid as an agent for enhanced oil recovery. Biotechnol Bioeng 98:842–853

    Article  CAS  PubMed  Google Scholar 

  40. Déziel E, Lépine F, Dennie D et al (1999) Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochim Biophys Acta 1440:244–252

    Article  PubMed  Google Scholar 

  41. Küpper B, Mause A, Halka L et al (2013) Fermentative Produktion von Monorhamnolipiden im Pilotmaßstab – Herausforderungen der Maßstabsvergrößerung. Chem Ing Tech 85:834–840

    Article  Google Scholar 

  42. Champion JT, Gilkey JC, Lamparski H et al (1995) Electron-microscopy of rhamnolipid (biosurfactant) morphology - effects of pH, cadmium, and octadecane. J Colloid Interface Sci 170:569–574

    Article  CAS  Google Scholar 

  43. Sieman M, Wagner F (1993) Prospects and limits for the production of biosurfactants using immobilized biocatalysts. In: Kosaric N (ed) Biosurfactants. Marcel Dekker, Inc., New York

    Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Frank Rosenau and Andreas Wittgens at IMET, HHU Düsseldorf, for carrying out the molecular biology work described. We also thank Rudolf Hausmann and Michaela Zwick (Karlsruhe Institute of Technology) for providing reference material for analytics. Additional thanks go to Wing-Jin Li for providing the picture of the CTAB plate. The “Deutsche Bundesstiftung Umwelt” (DBU) and the Cluster of Excellence “Tailor-Made Fuels from Biomass,” which is funded by the Excellence Initiative of the German federal and state governments to promote science and research at German universities, are gratefully acknowledged for providing financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars M. Blank .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Tiso, T., Germer, A., Küpper, B., Wichmann, R., Blank, L.M. (2015). Methods for Recombinant Rhamnolipid Production. In: McGenity, T., Timmis, K., Nogales Fernández, B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_60

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_60

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49126-3

  • Online ISBN: 978-3-662-49127-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics