Skip to main content

Lipidomic Analysis of Bacteria by Thin-Layer Chromatography and Liquid Chromatography/Mass Spectrometry

  • Protocol
  • First Online:
Hydrocarbon and Lipid Microbiology Protocols

Part of the book series: Springer Protocols Handbooks ((SPH))

Abstract

Lipids are a diverse group of hydrophobic or amphipathic molecules that play key biological and physiological functions, such as acting as structural components of cell membranes, serving as energy storage sources, and participating in cellular signaling. Lipidomics is a systems approach that involves global identification and quantitation of lipids in cells or tissues. This evolving discipline has gained rapid development and popularization over the past decade. In this chapter, we describe two different and highly complementary methods for bacterial lipidomic analysis, namely, thin-layer chromatography (TLC) and liquid chromatography/mass spectrometry (LC/MS). The detailed protocols of these two methods are provided for the identification and quantitation of the polar lipids of Clostridium tetani, an anaerobic bacterium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lu YH, Guan Z, Zhao J, Raetz CR (2011) Three phosphatidylglycerol-phosphate phosphatases in the inner membrane of Escherichia coli. J Biol Chem 286:5506–5518

    Article  CAS  PubMed  Google Scholar 

  2. Raetz CRH (1986) Molecular genetics of membrane phospholipid synthesis. Annu Rev Genet 20:253–295

    Article  CAS  PubMed  Google Scholar 

  3. O’Leary WM, Wilkinson SG (1988) Gram-positive bacteria. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic, London, pp 117–201

    Google Scholar 

  4. Wilkinson SG (1988) Gram-negative bacteria. In: Ratledge C, Wilkinson SG (eds) Microbial lipids, vol 1. Academic, London, pp 299–488

    Google Scholar 

  5. Goldfine H (1982) Lipids of procaryotes-structure and distribution. Curr Top Membr Trans 17:1–43

    Article  CAS  Google Scholar 

  6. Geiger O, Gonzalez-Silva N, Lopez-Lara IM, Sohlenkamp C (2010) Amino acid-containing membrane lipids in bacteria. Prog Lipid Res 49:46–60

    Article  CAS  PubMed  Google Scholar 

  7. Fuchs B, Suss R, Teuber K, Eibisch M, Schiller J (2011) Lipid analysis by thin-layer chromatography – a review of the current state. J Chromatogr A 1218:2754–2774

    Article  CAS  PubMed  Google Scholar 

  8. Dennis EA (2009) Lipidomics joins the omics evolution. Proc Natl Acad Sci U S A 106:2089–2090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Quehenberger O, Armando AM, Brown AH, Milne SB, Myers DS, Merrill AH, Bandyopadhyay S, Jones KN, Kelly S, Shaner RL, Sullards CM, Wang E, Murphy RC, Barkley RM, Leiker TJ, Raetz CR, Guan Z, Laird GM, Six DA, Russell DW, McDonald JG, Subramaniam S, Fahy E, Dennis EA (2010) Lipidomics reveals a remarkable diversity of lipids in human plasma. J Lipid Res 51:3299–3305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tan BK, Bogdanov M, Zhao J, Dowhan W, Raetz CR, Guan Z (2012) Discovery of a cardiolipin synthase utilizing phosphatidylethanolamine and phosphatidylglycerol as substrates. Proc Natl Acad Sci U S A 109:16504–16509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Fuchs B, Schiller J, Suss R, Schurenberg M, Suckau D (2007) A direct and simple method of coupling matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS) to thin-layer chromatography (TLC) for the analysis of phospholipids from egg yolk. Anal Bioanal Chem 389:827–834

    Article  CAS  PubMed  Google Scholar 

  12. Kates M (1990) Techniques of lipidology. Isolation, analysis and identification of lipids, 2nd edn. Elsevier, Amsterdam, p 106

    Google Scholar 

  13. Koga Y (2006) Recent advances in structural research on ether lipids from Archaea, etc. Biosci Biotechnol Biochem 69:2019–2034

    Article  Google Scholar 

  14. Naparstek S, Guan Z, Eichler J (2012) A predicted geranylgeranyl reductase reduces the omega-position isoprene of dolichol phosphate in the halophilic archaeon, Haloferax volcanii. Biochim Biophys Acta 1821:923–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wieslander Å, Rilfors L, Lindblom G (1986) Metabolic changes of membrane lipid composition in Acholeplasma laidlawii by hydrocarbons, alcohols, and detergents: arguments for effects on lipid packing. Biochemistry 25:7511–7517

    Article  CAS  PubMed  Google Scholar 

  16. MacDonald DL, Goldfine H (1991) Effects of solvents and alcohols on the polar lipid composition of Clostridium butyricum under conditions of controlled lipid chain composition. Appl Environ Microbiol 57:3517–3521

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Tian B, Guan Z, Goldfine H (2013) An ethanolamine-phosphate modified glycolipid in Clostridium acetobutylicum that responds to membrane stress. Biochim Biophys Acta 1831:1185–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ruhl J, Hein EM, Hayen H, Schmid A, Blank LM (2012) The glycerophospholipid inventory of Pseudomonas putida is conserved between strains and enables growth condition-related alterations. J Microbial Biotechnol 5:45–58

    Article  Google Scholar 

  19. Kates M (1986) Techniques of lipidology. Isolation, analysis and identification of lipids, 2nd edn. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  20. Johnston NC, Aygun-Sunar S, Guan Z, Ribeiro AA, Daldal F, Raetz CR, Goldfine H (2010) A phosphoethanolamine-modified glycosyl diradylglycerol in the polar lipids of Clostridium tetani. J Lipid Res 51:1953–1961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Siakotos AN, Rouser G (1965) Analytical separation of nonlipid water soluble substances and gangliosides from other lipids by dextran gel column chromatography. J Am Chem Soc 42:913–919

    CAS  Google Scholar 

  22. Johnston NC, Goldfine H (1992) Replacement of the aliphatic chains of Clostridium acetobutylicum by exogenous fatty acids: regulation of phospholipid and glycolipid composition. J Bacteriol 174:1848–1853

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Batrakov SG, Mosezhnyi AE, Ruzhitsky AO, Sheichenko VI, Nikitin DI (2000) The polar-lipid composition of the sphingolipid-producing bacterium Flectobacillus major. Biochim Biophys Acta 1484:225–240

    Article  CAS  PubMed  Google Scholar 

  24. Batrakov SG, Sheichenko VI, Nikitin DI (1999) A novel glycosphingolipid from gram-negative aquatic bacteria. Biochim Biophys Acta 1440:163–175

    Article  CAS  PubMed  Google Scholar 

  25. De Rudder KEE, Thomas-Oates JE, Geiger O (1997) Rhizobium meliloti mutants deficient in phospholipid N-Methyltransferase still contain phosphatidylcholine. J Bacteriol 179:6921–6928

    PubMed  PubMed Central  Google Scholar 

  26. Garrett TA, Guan Z, Raetz CR (2007) Analysis of ubiquinones, dolichols, and dolichol diphosphate-oligosaccharides by liquid chromatography-electrospray ionization-mass spectrometry. Methods Enzymol 432:117–143

    Article  CAS  PubMed  Google Scholar 

  27. Guan Z (2009) Discovering novel brain lipids by liquid chromatography/tandem mass spectrometry. J Chromatogr B 877:2814–2821

    Article  CAS  Google Scholar 

  28. Guan Z, Katzianer D, Zhu J, Goldfine H (2014) Clostridium difficile contains plasmalogen species of phospholipids and glycolipids. Biochim Biophys Acta 1842:1353–1359

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work was partially supported by a LIPID MAPS glue grant (GM-069338) from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ziqiang Guan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Goldfine, H., Guan, Z. (2015). Lipidomic Analysis of Bacteria by Thin-Layer Chromatography and Liquid Chromatography/Mass Spectrometry. In: McGenity, T., Timmis, K., Nogales , B. (eds) Hydrocarbon and Lipid Microbiology Protocols. Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/8623_2015_56

Download citation

  • DOI: https://doi.org/10.1007/8623_2015_56

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-50433-8

  • Online ISBN: 978-3-662-50435-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics